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INTRODUCTION1

I hope that this book will be of interest to students and researchers in
mathematics, physics and theoretical chemistry. The first few chapters can
be read with ease by anyone with a knowledge of calculus and differential
equations. However, some later chapters, and most of the appendices, are
more demanding..

Chapter 10 deals with resonance energy transfer and especially with the
relativistic treatment of this phenomenon. My fascination with this topic
dates back to my Ph.D. thesis work in the early 1960’s at Imperial College,
which was then a part of the University of London. I had previously been
working at the laboratory of Prof. Albert Szent-Györgyi and the Marine Bi-
ological Laboratory at Woods Hole, Massachusetts. The problem on which
we had been working was a quantum mechanical treatment of the primary
process in photosynthesis, where a photon is absorbed, and its energy stabi-
lized. Resonance energy transfer plays a large role in this process2. When
I started my Ph.D. work in London, I decided to see whether relativistic
corrections made a difference3.

My calculations4 showed that while the usual non-relativistic treatment
leads to transition probabilities that fall off as 1/R6, the calculated relativistic
transition probabilities had a long-range component that fell off as 1/R2.
Thus,if we imagine a very large sphere around an excited atom of molecule,
the probability that the excitation energy will be transferred to one or another
of the acceptors is independent of the size of the sphere! Is this a process
that competes with spontaneous photon emission? Or is it an alternative
way of treating the joint process of emission and absorption?5

Today, sixty years later, I continue to be fascinated by this question. In
Chapter 10 experiments are proposed which could demonstrate that reso-
nance energy transfer over macroscopic distance is possible. I am grateful to
my son, Associate Professor James Emil Avery of the Niels Bohr Institute,

1This book makes some use of my previously published book chapters.
2J.S. Avery, Z. Bay and A. Szent-Györgyi, On the Energy Transfer in Biological Sys-

tems, Proc. Nat. Acad. Sci. (US), 47, 1742-1744, (1961)
3J.S. Avery, Resonance energy transfer and related phenomena, Ph.D. thesis, Imperial

College of Science and Technology, University of London, (1965)
4J.S. Avery, Resonance energy transfer and spontaneous photon emission, Proc. Phys.

Soc. (London) 88, Part 1, (1966)
5J.S. Avery, Use of the S-Matrix in the Relativistic Treatment of Resonance Energy

Transfer. Int. J. Quantum Chemistry, XXV, 79-96, (1984)



University of Copenhagen, for his help and advice. He deserves to be listed
as co-author of this book. However, I I don’t want him to be blamed for the
book’s shortcomings, for example, in case the discussion section of Chapter
10 is seen to be too speculative.

Besides the usual topics, the book also focuses on some aspects of quan-
tum theory that have been of special interest to myself and to my son, James.
Among these special areas of interest is the use of 4-dimensional hyperspher-
ical harmonics in reciprocal-space quantum chemistry. We share this interest
with Professor Vincenzo Aquilanti and his group at the University of Perugia
in Italy6. Both James and I have made numerous research visits to Perugia,
where we have enjoyed both the wonderful hospitality and great mathemat-
ical knowledge of Prof. Aquilanti and his co-workers. I should mention that
James has a number of important papers in which he uses hyperspherical
harmonics to calculate 3-center and 4-center interelectron repulsion integrals
for exponential-type basis sets (ETO’s).7 James and I are also co-authors of
several books on hyperspherical harmonics.8 9 10

My interest in many-dimensional spaces brought me into contact with
Professor Dudley R. Herschbach of Harvard University. I have been privileged
to visit his brilliant research group many times, and to work closely with Prof.
Herschbach and his colleagues for many years.11 12

6Aquilanti, V. and Avery, J., Sturmian expansions for quantum mechanical many-body
problems and hyperspherical harmonics, Adv. Quant. Chem., 39 72-101, (2001)

74-center STO interelectron repulsion integrals with Coulomb Sturmians Avery, James
Emil & Avery, J. S., (2018), In : Advances in Quantum Chemistry. 76, p. 133-146

8Generalized Sturmians and Atomic Spectra , by J.E. Avery and J.S. Avery, World
Scientific Publishing (2006)

9Symmetry-Adapted Basis Sets , by J.S. Avery, S. Rettrup and J.E. Avery, World
Scientific Publishing Co, (2012)

10Hyperspherical Harmonics and their Physical Applications, by J.E. Avery and J.S.
Avery, World Scientific Publishing Co. (2017)

11Avery, J. and Herschbach, D. R., Hyperspherical Sturmian basis functions, Int. J.
Quantum Chem., 41 673, (1992)

12J. Avery, D-Dimensional Hydrogenlike Orbitals, in Dimensional Scaling in Chemical
Physics , D.R. Herschbach, J, Avery, and O. Goscinski editors, Kluwer Academic Publish-
ers, Dordricht, Netherlands, (1992),pages 139-164



Figure 1: Professor Dudley R. Herschbach accepting the American
Institute of Chemistry’s gold medal in 2011. He shared the 1986
Nobel Prize in Chemistry for his pioneering contributions to our
understanding of the mechanisms of chemical reactions.



Figure 2: Professor Vincenzo Aquilanti (born in 1939). After work-
ing at Harvard with Dudley Herschbach, he returned to Italy,
where he became the head of the chemistry department at the
University of Perugia. He and his group have done pioneering
theoretical and experimental work on the mechanism of chemical
reactions, using molecular beam techniques. Professor Aquilanti
and his group have also developed the use of 4-dimensional hy-
perspherical harmonics in momentum-space quantum theory, an
interest which they share with my son James and myself.



Figure 3: Associate Professor James Emil Avery of the Niels Bohr
Institute, University of Copenhagen. He is the author of a number
of important papers that uses hyperspherical harmonics to calcu-
late difficult 3-center and 4-center interelectron repulsion integrals
for exponential-type orbitals, and is also the co-author of several
books on hyperspherical harmonics and generalized Sturmians.
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Chapter 1

ERNEST RUTHERFORD

1.1 Rutherford’s model of the atom

In 1895, the year during which Roentgen made his revolutionary discovery of X-rays, a
young New Zealander named Ernest Rutherford was digging potatoes on his father’s farm,
when news reached him that he had won a scholarship for advanced study in England.
Throwing down his spade, Rutherford said, “That’s the last potato I’ll dig!” He postponed
his marriage plans and sailed for England, where he enrolled as a research student at
Cambridge University. He began work at the Cavendish Laboratory, under the leadership
of J.J. Thomson, the discoverer of the electron.

In New Zealand, Rutherford had done pioneering work on the detection of radio waves,
and he probably would have continued this work at Cambridge, if it had not been for the
excitement caused by the discoveries of Roentgen and Becquerel. Remembering this period
of his life, Rutherford wrote:

“Few of you can realize the enormous sensation caused by the discovery of X-rays by
Roentgen in 1895. It interested not only the scientific man, but also the man in the street,
who was excited by the idea of seeing his own insides and his bones. Every laboratory in
the world took out its old Crookes’ tubes to produce X-rays, and the Cavendish was no
exception.”

J.J. Thomson, who was interested in studying ions (charged atoms or molecules) in
gases, soon found that gaseous ions could be produced very conveniently by means of X-
rays. Rutherford abandoned his research on radio waves, and joined Thomson in this work.

“When I entered the Cavendish Laboratory”, Rutherford remembered later, “I began to
work on the ionization of gases by means of X-rays. After reading the paper of Becquerel,
I was curious to know whether the ions produced by the radiation from uranium were of
the same nature as those produced by X-rays; and in particular, I was interested because
Becquerel thought that his radiation was somehow intermediate between light and X-rays.”

“I therefore proceeded to make a systematic examination of the radiation, and I found

11



12 QUANTUM THEORY

Figure 1.1: Rutherford receiving the 1908 Nobel Prize in Chemistry.

that it was of two types - one which produced intense ionization, and which was absorbed
by a few centimeters of air, and the other, which produced less intense ionization, but was
more penetrating. I called these alpha rays and beta rays respectively; and when, in 1898,
Villard discovered a still more penetrating type of radiation, he called it gamma-radiation.”

Rutherford later showed that the alpha-rays were actually ionized helium atoms thrown
out at enormous velocities by the decaying uranium, and that beta-rays were high-speed
electrons. The gamma-rays turned out to be electromagnetic waves, just like light waves,
but of extremely short wavelength.

Rutherford returned briefly to New Zealand to marry his sweetheart, Mary Newton;
and then he went to Canada, where he had been offered a post as Professor of Physics
at McGill University. In Canada, with the collaboration of the chemist, Frederick Soddy
(1877-1956), Rutherford continued his experiments on radioactivity, and worked out a
revolutionary theory of transmutation of the elements through radioactive decay.

During the middle ages, alchemists had tried to change lead and mercury into gold.
Later, chemists had convinced themselves that it was impossible to change one element
into another. Rutherford and Soddy now claimed that radioactive decay involves a whole
series of transmutations, in which one element changes into another!

Returning to England as head of the physics department at Manchester University,
Rutherford continued to experiment with alpha-particles. He was especially interested in
the way they were deflected by thin metal foils. Rutherford and his assistant, Hans Geiger
(1886-1945), found that most of the alpha-particles passed through a metal foil with only
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a very slight deflection, of the order of one degree.

1.2 The Geiger-Marsden scattering experiment

In 1911, a young research student named Ernest Marsden joined the group, and Rutherford
had to find a project for him. What happened next, in Rutherford’s own words, was as
follows:

“One day, Geiger came to me and said, ‘Don’t you think that young Marsden, whom
I’m training in radioactive methods, ought to begin a small research?’ Now I had thought
that too, so I said, ‘Why not let him see if any alpha-particles can be scattered through
a large angle?’ I may tell you in confidence that I did not believe that they would be,
since we knew that the alpha-particle was a very fast, massive particle, with a great deal
of energy; and you could show that if the scattering was due to the accumulated effect of
a number of small scatterings, the chance of an alpha-particle’s being scattered backward
was very small.”

“Then I remember two or three days later, Geiger coming to me in great excitement
and saying, ‘We have been able to get some of the alpha-particles coming backwards’. It
was quite the most incredible event that has ever happened to me in my life. It was almost
as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and
hit you.”

“On consideration, I realized that this scattering backwards must be the result of
a single collision, and when I made calculations, I found that it was impossible to get
anything of that order of magnitude unless you took a system in which the greater part of
the mass of the atom was concentrated in a minute nucleus.”

“It was then that I had the idea of an atom with a minute massive center carrying
a charge. I worked out mathematically what laws the scattering should obey, and found
that the number of particles scattered through a given angle should be proportional to the
thickness of the scattering foil, the square of the nuclear charge, and inversely proportional
to the fourth power of the velocity. These deductions were later verified by Geiger and
Marsden in a series of beautiful experiments.”
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Figure 1.2: The Geiger-Marsden scattering experiment. To Rutherford’s great
surprise, the experiment showed that some of the alpha particles were scat-
tered backwards. After treating the problem mathematically, Rutherford con-
cluded that most of the mass of an atom must be concentrated in a very small,
positively-charged nucleus, around which the much lighter electrons circulate
in orbits.
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Figure 1.3: In Thomson’s model of the atom, the electrons were embedded, like
raisins in a pudding, in a diffuse background of positive charge. The Geiger-
Marsden experiment forced Rutherford to propose a new model to account for
the observed back-scattering of alpha particles.
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1.3 Rutherford’s model of the atom

According to the model proposed by Rutherford in 1911, every atom has an extremely tiny
nucleus, which contains almost all of the mass of the atom. Around this tiny but massive
nucleus, Rutherford visualized light, negatively-charged electrons circulating in orbits, like
planets moving around the sun. Rutherford calculated that the diameter of the whole atom
had to be several thousand times as large as the diameter of the nucleus.

1.4 Informality, enthusiasm and speed

Rutherford’s model of the atom explained beautifully the scattering experiments of Geiger
and Marsden, but at the same time it presented a serious difficulty: According to Maxwell’s
equations, the electrons circulating in their orbits around the nucleus ought to produce
electromagnetic waves. It could easily be calculated that the electrons in Rutherford’s
atom ought to lose all their energy of motion to this radiation, and spiral in towards the
nucleus. Thus, according to classical physics, Rutherford’s atom could not be stable. It
had to collapse.

Rutherford’s laboratory was like no other in the world, except J.J. Thomson’s. In fact,
Rutherford had learned much about how to run a laboratory from his old teacher, Thomson.
Rutherford continued Thomson’s tradition of democratic informality and cheerfulness. Like
Thomson, he had a gift for infecting his students with his own powerful scientific curiosity,
and his enthusiastic enjoyment of research.

Thomson had also initiated a tradition for speed and ingenuity in the improvisation of
experimental apparatus - the so-called “sealing-wax and string” tradition - and Rutherford
continued it. Niels Bohr, after working with Rutherford, was later to continue the tradition
of informality and enthusiasm at the Institute for Theoretical Physics which Bohr founded
in Copenhagen in 1920.

Most scientific laboratories of the time offered a great contrast to the informality, en-
thusiasm, teamwork and speed of the Thomson-Rutherford-Bohr tradition. E.E. da C.
Andrade, who first worked in Lenard’s laboratory at Heidelberg, and later with Ruther-
ford at Manchester, has given the following description of the contrast between the two
groups:

“At the Heidelberg colloquium, Lenard took the chair, very much like a master with
his class. He had the habit, if any aspect of his work was being treated by the speaker, of
interrupting with, ‘And who did that first?’ The speaker would reply with a slight bow,
‘Herr Geheimrat, you did that first’, to which Lenard answered, ‘Yes, I did that first’.”

“At the Manchester colloquium, which met on Friday afternoons, Rutherford was, as
in all his relations with the research workers, the boisterous, enthusiastic, inspiring friend,
undoubtedly the leader but in close community with the led, stimulating rather than
commanding, ‘gingering up’, to use a favorite expression of his, his team.”

Although Rutherford occasionally swore at his “lads”, his affection for them was very
real. He had no son of his own, and he became a sort of father to the brilliant young men in
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Figure 1.4: Henry Moseley (1887-1915).

his laboratory. Their nickname for him was “Papa”. Such was the laboratory which Harry
Moseley joined in 1910. At almost the same time, Moseley’s childhood friend, Charles
Darwin (the grandson of the “right” Charles Darwin), also joined Rutherford’s team.

After working on a variety of problems in radioactivity which were given to him by
Rutherford, Moseley asked whether he and Charles Darwin might be allowed to study
the spectra of X-rays. At first, Rutherford said no, since no one at Manchester had any
experience with X-rays; “and besides”, Rutherford added with a certain amount of bias,
“all science is either radioactivity or else stamp-collecting”.

However, after looking more carefully at what was being discovered about X-rays,
Rutherford gave his consent. In 1912, a revolutionary discovery had been made by the
Munich physicist, Max von Laue (1879-1960): It had long been known that because of its
wavelike nature, white light can be broken up into the colors of the spectrum by means of
a “diffraction grating” - a series of parallel lines engraved very closely together on a glass
plate.

For each wavelength of light, there are certain angles at which the new wavelets pro-
duced by the lines of the diffraction grating reinforce each other instead of cancelling. The
angles of reinforcement are different for each wavelength, and thus the different colors are
separated by the grating.

Max von Laue’s great idea was to do the same thing with X-rays, using a crystal as
a diffraction grating. The regular lines of atoms in the crystal, von Laue reasoned, would
act be fine enough to fit the tiny wavelength of the X-rays, believed to be less than one
ten-millionth of a centimeter.

Von Laue’s experiment, performed in 1912, had succeeded beautifully, and his new
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Figure 1.5: Sir Charles Galton Darwin (1887-1962), grandson of the “right”
Charles Darwin.
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technique had been taken up in England by a father and son team, William Henry Bragg
(1862-1942) and William Lawrence Bragg (1890-1971). The Braggs had used X-ray diffrac-
tion not only to study the spectra of X-rays, but also to study the structure of crystals.
Their techniques were later to become one of the most valuable research tools available for
studying molecular structure.

Having finally obtained Rutherford’s permission, Moseley and Darwin threw themselves
into this exciting field of study. Remembering his work with Harry Moseley, Charles Darwin
later wrote:

“Working with Moseley was one of the most strenuous exercises I have ever undertaken.
He was, without exception, the hardest worker I have ever known... There were two rules
for his work: First, when you started to set up the apparatus for an experiment, you
must not stop until it was set up. Second, when the apparatus was set up, you must not
stop work until the experiment was done. Obeying these rules implied a most irregular
life, sometimes with all-night sessions; and indeed, one of Moseley’s experteses was the
knowledge of where in Manchester one could get a meal at three in the morning.”

After about a year, Charles Darwin left the experiments to work on the theoretical
aspects of X-ray diffraction. (He was later knighted for his distinguished contributions to
theoretical physics.) Moseley continued the experiments alone, systematically studying the
X-ray spectra of all the elements in the periodic system.

Niels Bohr had shown that the binding energies of the allowed orbits in a hydrogen atom
are equal to Rydberg’s constant , R (named after the distinguished Swedish spectroscopist,
Johannes Robert Rydberg), divided by the square of an integral “quantum number”, n.
He had also shown that for heavier elements, the constant, R, is equal to the square of the
nuclear charge, Z, multiplied by a factor which is the same for all elements. The constant,
R, could be observed in Moseley’s studies of X-ray spectra: Since X-rays are produced
when electrons are knocked out of inner orbits and outer electrons fall in to replace them,
Moseley could use the Planck-Einstein relationship between frequency and energy to find
the energy difference between the orbits, and Bohr’s theory to relate this to R.

Moseley found complete agreement with Bohr’s theory. He also found that the nuclear
charge, Z, increased regularly in integral steps as he went along the rows of the periodic
table: Hydrogen had Z=1, helium Z=2, lithium Z=3, and so on up to uranium with Z=92.
The 92 electrons of a uranium atom made it electrically neutral, exactly balancing the
charge of the nucleus. The number of electrons of an element, and hence its chemical
properties, Moseley found, were determined uniquely by its nuclear charge, which Moseley
called the “atomic number”.

Moseley’s studies of the nuclear charges of the elements revealed that a few elements
were missing. In 1922, Niels Bohr received the Nobel Prize for his quantum theory of the
atom; and he was able to announce at the presentation ceremony that one of Moseley’s
missing elements had been found at his institute. Moseley, however, was dead. He was one
of the ten million young men whose lives were needlessly thrown away in Europe’s most
tragic blunder - the First World War.
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1.5 Artificial transmutations of elements

During the First World War, Rutherford’s young men had joined the army, and he had
been forced to spend most of his own time working on submarine detection. In spite of
this, he had found some spare time for his scientific passion - bombarding matter with
alpha particles. Helped by his laboratory steward, Kay, Rutherford had studied the effects
produced when alpha particles from a radium source struck various elements. In a letter
to Niels Bohr, dated December 9, 1917, Rutherford wrote:

“I have got, I think, results that will ultimately have great importance. I wish that you
were here to talk matters over with me. I am detecting and counting the lighter atoms set
in motion by alpha particles, and the results, I think, throw a good deal of light on the
character and distribution of forces near the nucleus... I am trying to break up the atom
by this method. In one case, the results look promising, but a great deal of work will be
required to make sure. Kay helps me, and is now an expert counter. Best wishes for a
happy Christmas.”

In July, 1919, Bohr was at last able to visit Manchester, and he heard the news directly
from his old teacher: Rutherford had indeed produced artificial nuclear transmutations! In
one of his experiments, an alpha-particle (i.e. a helium nucleus with nuclear charge 2) was
absorbed by a nitrogen nucleus. Later, the compound nucleus threw out a proton with
charge 1; and thus the bombarded nucleus gained one unit of charge. It moved up one
place in the periodic table and became an isotope of oxygen.

Bohr later wrote: “I learned in detail about his great new discovery of controlled, or
so-called artificial, nuclear transmutations, by which he gave birth to what he liked to call
‘modern Alchemy’, and which in the course of time, was to give rise to such tremendous
consequences as regards man’s mastery of the forces of nature.”

Other scientists rushed to repeat and extend Rutherford’s experiments. Particle ac-
celerators were built by E.O. Lawrence (1901-1958) in California, by J.H. van de Graff
(1901-1967) at the Massachusetts Institute of Technology and by John Cockcroft (1897-
1967), working with Rutherford at the Cavendish Laboratory. These accelerators could
hurl protons at energies of a million electron-volts. Thus, protons became another type of
projectile which could be used to produce nuclear transmutations.
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Chapter 2

NIELS BOHR

2.1 Christian Bohr’s household

Christian Bohr (1855-1911) was appointed professor of physiology at the University of
Copenhagen in 1886. In this position, he made a number of important discoveries con-
nected with respiration in mammals, including what is now known as the “Bohr effect”,
i.e. the tendency of high concentrations of CO2 and of H+ ions to increase the efficiency
of hemoglobin in releasing oxygen. Christian Bohr was also the teacher of August Krogh,
who later won a Nobel Prize in Medicine and Physiology.

Christian Bohr’s wife, Ellen Adler Bohr, belonged to a wealthy Jewish banking family,
and Niels Bohr was born in the impressive multi-story Adler mansion that still stands
today near one of Copenhagen’s canals opposite the Danish Parliament. During the time
that Niels and Harold Bohr were growing up, this house was the meeting place for many
of Copenhagen’s leading intellectuals, and the boys were allowed to attend meetings where
scientific and philosophical questions were debated. This upbringing contributed to the
fact that both Niels and Harold later became famous in their respective fields, physics and
mathematics.

The Bohr family has produced outstanding scientists for four generations. Besides
Christian, Niels and Harold Bohr, there is also Niels’ son Aage, who shared a Nobel Prize
in Physics for his work on the excited states of nuclei. Aage’s sons, Vilhelm and Thomas,
are also outstanding scientists.

Having been brought up in a highly intellectual household, Niels Bohr’s scientific abili-
ties developed early. In 1905, when Niels was 20, a gold medal competition was announced
by the Royal Danish Society of Sciences and Letters. The challenge was to investigate a
method for determining the surface tension of liquids. The method had been proposed
earlier by Lord Raleigh, and it involved measuring the frequency of oscillations on the
surface of a water jet. After working in his father’s laboratory, making his own glassware
to produce elliptical water jets, and presenting his results together with a mathematical
analysis, Niels Bohr won the gold medal.

23
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Figure 2.1: Christian Bohr (1855-1911), the father of Niels and Harold Bohr.
He was Professor of Physiology at the University of Copenhagen.
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Figure 2.2: Niels Bohr (1885-1952) as a young man.

Figure 2.3: Niels Bohr and his wife, Margrethe.
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2.2 Planck, Einstein and Bohr

According to the model proposed by Rutherford in 1911, every atom has an extremely tiny
nucleus, which contains almost all of the mass of the atom. Around this tiny but massive
nucleus, Rutherford visualized light, negatively-charged electrons circulating in orbits, like
planets moving around the sun. Rutherford calculated that the diameter of the whole atom
had to be several thousand times as large as the diameter of the nucleus.

Rutherford’s model of the atom explained beautifully the scattering experiments of
Geiger and Marsden, but at the same time it presented a serious difficulty: According
to Maxwell’s equations, the electrons circulating in their orbits around the nucleus ought
to produce electromagnetic waves. It could easily be calculated that the electrons in
Rutherford’s atom ought to lose all their energy of motion to this radiation, and spiral in
towards the nucleus. Thus, according to classical physics, Rutherford’s atom could not be
stable. It had to collapse.

Niels Bohr became aware of this paradox when he worked at Rutherford’s Manchester
laboratory during the years 1911-1913. Bohr was not at all surprised by the failure of
classical concepts when applied to Rutherford’s nuclear atom. Since he had been educated
in Denmark, he was more familiar with the work of German physicists than were his
English colleagues at Manchester. In particular, Bohr had studied the work of Max Planck
(1858-1947) and Albert Einstein (1879-1955).

Just before the turn of the century, the German physicist, Max Planck, had been
studying theoretically the electromagnetic radiation coming from a small hole in an oven.
The hole radiated as though it were an ideally black body. This “black body radiation”
was very puzzling to the physicists of the time, since classical physics failed to explain the
frequency distribution of the radiation and its dependence on the temperature of the oven.

In 1901, Max Planck had discovered a formula which fitted beautifully with the exper-
imental measurements of the frequency distribution of black body radiation; but in order
to derive his formula, he had been forced to make a radical assumption which broke away
completely from the concepts of classical physics.

Planck had been forced to assume that light (or, more generally, electromagnetic radia-
tion of any kind) can only be emitted or absorbed in amounts of energy which Planck called
“quanta”. The amount of energy in each of these “quanta” was equal to the frequency of
the light multiplied by a constant, h, which came to be known as “Planck’s constant”.

This was indeed a strange assumption! It seemed to have been pulled out of thin air;
and it had no relation whatever to anything that had been discovered previously in physics.
The only possible justification for Planck’s quantum hypothesis was the brilliant success of
his formula in explaining the puzzling frequency distribution of the black body radiation.
Planck himself was greatly worried by his own radical break with classical concepts, and
he spent many years trying unsuccessfully to relate his quantum hypothesis to classical
physics.

In 1905, Albert Einstein published a paper in the Annalen der Physik in which he
applied Planck’s quantum hypothesis to the photoelectric effect. (At that time, Einstein
was 25 years old, completely unknown, and working as a clerk at the Swiss Patent Office.)
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Figure 2.4: Niels Bohr and Albert Einstein in a photo by Paul Ehrenfest. Public
domain, Wikimedia Commons

The photoelectric effect was another puzzling phenomenon which could not in any way be
explained by classical physics. The German physicist Lenard had discovered in 1903 that
light with a frequency above a certain threshold could knock electrons out of the surface of
a metal; but below the threshold frequency, nothing at all happened, no matter how long
the light was allowed to shine.

Using Planck’s quantum hypothesis, Einstein offered the following explanation for the
photoelectric effect: A certain minimum energy was needed to overcome the attractive
forces which bound the electron to the metal surface. This energy was equal to the threshold
frequency multiplied by Planck’s constant. Light with a frequency equal to or higher than
the threshold frequency could tear an electron out of the metal; but the quantum of energy
supplied by light of a lower frequency was insufficient to overcome the attractive forces.

Einstein later used Planck’s quantum formula to explain the low-temperature behavior
of the specific heats of crystals, another puzzling phenomenon which defied explanation
by classical physics. These contributions by Einstein were important, since without this
supporting evidence it could be maintained that Planck’s quantum hypothesis was an ad
hoc assumption, introduced for the sole purpose of explaining black body radiation.

As a student, Niels Bohr had been profoundly impressed by the radical ideas of Planck
and Einstein. In 1912, as he worked with Rutherford at Manchester, Bohr became con-
vinced that the problem of saving Rutherford’s atom from collapse could only be solved
by means of Planck’s quantum hypothesis.

Returning to Copenhagen, Bohr continued to struggle with the problem. In 1913, he
found the solution: The electrons orbiting around the nucleus of an atom had “angular
momentum”. Assuming circular orbits, the angular momentum was given by the product of
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the mass and velocity of the electron, multiplied by the radius of the orbit. Bohr introduced
a quantum hypothesis similar to that of Planck: He assumed that the angular momentum
of an electron mevr in an allowed orbit, (multiplied by 2 pi), had to be equal to an integral
multiple of Planck’s constant h. The lowest value of the integer, n=1, corresponded to
the lowest allowed orbit. Thus, in Bohr’s model, the collapse of Rutherford’s atom was
avoided.

mevr = n~ n = 1, 2, 3, 4, ....

~ ≡ h

2π
(2.1)

Here me is the mass of the electron, v is its velocity and r is the radius of its classical orbit
around the nucleus, so that mevr is the classical expression for the angular momentum of
an electron in a circular orbit. In Bohr’s quantization of angular momentum, h represents
Planck’s constant, which had been introduced by Max Planck to explain the frequency
distribution of black body radiation.

Bohr calculated that the binding energies of the various allowed electron orbits in
a hydrogen atom should be a constant divided by the square of the integer n; and he
calculated the value of the constant to be 13.5 electron-Volts. This value fit exactly the
observed ionization energy of hydrogen. After talking with the Danish spectroscopist,
H.M. Hansen, Bohr realized with joy that by combining his formula for the allowed orbital
energies with the Planck-Einstein formula relating energy to frequency, he could explain
the mysterious line spectrum of hydrogen.
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When Niels Bohr published all this in 1913, his paper produced agonized cries of “foul!”
from the older generation of physicists. When Lord Rayleigh’s son asked him if he had
seen Bohr’s paper, Rayleigh replied: “Yes, I have looked at it; but I saw that it was of no
use to me. I do not say that discoveries may not be made in that sort of way. I think very
likely they may be. But it does not suit me.” However, as more and more atomic spectra
and properties were explained by extensions of Niels Bohr’s theories, it became clear that
Planck, Einstein and Bohr had uncovered a whole new stratum of phenomena, previously
unsuspected, but of deep and fundamental importance.
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Figure 2.5: Line spectra of hydrogen. The figure show the emission spectrum
energies associated with transitions between allowed energies. These transition
energies fitted perfectly with Niels Bohr’s calculations. As more and more
atomic spectra and properties were explained by extensions of Niels Bohr’s
theories, it became clear that Planck, Einstein and Bohr had uncovered a
whole new stratum of phenomena, previously unsuspected, but of deep and
fundamental importance.
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Figure 2.6: Another photo of Bohr and Einstein by Ehrenfest.
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2.3 Atomic numbers

Bohr’s atomic theory soon received strong support from the experiments of one of the
brightest of Rutherford’s bright young men - Henry Moseley (1887-1915). Moseley came
from a distinguished scientific family. Not only his father, but also both his grandfathers,
had been elected to the Royal Society. After studying at Oxford, where his father had
once been a professor, Moseley found it difficult to decide where to do his postgraduate
work. Two laboratories attracted him: the great J.J. Thomson’s Cavendish Laboratory at
Cambridge, and Rutherford’s laboratory at Manchester. Finally, he decided on Manchester,
because of the revolutionary discoveries of Rutherford, who two years earlier had won the
1908 Nobel Prize for Chemistry.

Rutherford’s laboratory was like no other in the world, except J.J. Thomson’s. In fact,
Rutherford had learned much about how to run a laboratory from his old teacher, Thomson.
Rutherford continued Thomson’s tradition of democratic informality and cheerfulness. Like
Thomson, he had a gift for infecting his students with his own powerful scientific curiosity,
and his enthusiastic enjoyment of research.

Thomson had also initiated a tradition for speed and ingenuity in the improvisation of
experimental apparatus - the so-called “sealing-wax and string” tradition - and Rutherford
continued it. Niels Bohr, after working with Rutherford, was later to continue the tradition
of informality and enthusiasm at the Institute for Theoretical Physics which Bohr founded
in Copenhagen in 1920.

Niels Bohr had shown that the binding energies of the allowed orbits in a hydrogen atom
are equal to Rydberg’s constant , R (named after the distinguished Swedish spectroscopist,
Johannes Robert Rydberg), divided by the square of an integral “quantum number”, n.
He had also shown that for heavier elements, the constant, R, is equal to the square of the
nuclear charge, Z, multiplied by a factor which is the same for all elements. The constant,
R, could be observed in Moseley’s studies of X-ray spectra: Since X-rays are produced
when electrons are knocked out of inner orbits and outer electrons fall in to replace them,
Moseley could use the Planck-Einstein relationship between frequency and energy to find
the energy difference between the orbits, and Bohr’s theory to relate this to R.

Moseley found complete agreement with Bohr’s theory. He also found that the nuclear
charge, Z, increased regularly in integral steps as he went along the rows of the periodic
table: Hydrogen had Z=1, helium Z=2, lithium Z=3, and so on up to uranium with Z=92.
The 92 electrons of a uranium atom made it electrically neutral, exactly balancing the
charge of the nucleus. The number of electrons of an element, and hence its chemical
properties, Moseley found, were determined uniquely by its nuclear charge, which Moseley
called the “atomic number”.

Moseley’s studies of the nuclear charges of the elements revealed that a few elements
were missing. In 1922, Niels Bohr received the Nobel Prize for his quantum theory of the
atom; and he was able to announce at the presentation ceremony that one of Moseley’s
missing elements had been found at his institute. Moseley, however, was dead. He was one
of the ten million young men whose lives were needlessly thrown away in Europe’s most
tragic blunder - the First World War.



32 QUANTUM THEORY

Figure 2.7: Niels Bohr with his sons at their summer house in Tisvilde.

2.4 Bohr’s Institute of Theoretical Physics

In 1916, Niels Bohr was appointed professor of theoretical physics at the University of
Copenhagen, a post that had been created especially for him. The following year, in
1917, he started to raise money for the construction of a new institute in which his new
department could be housed. The project received large contributions from the Danish
government and the Carlsberg Foundation, and from wealthy Danish businessmen. Bohr
himself designed the building, which opened in 1920.

During the period when Hitler’s Nazi party was coming to power in Germany, Bohr was
able to offer a refuge at his Institute of Theoretical Physics to many important physicists
who could no longer remain in Germany. Those to whom Bohr gave refuge included
Guido Beck, Felix Bloch, James Franck, George de Hevesy, Otto Frisch, Hilde Levi, Lise
Meitner, George Placzek, Eugene Rabinowitch, Stefan Rozental, Erich Ernst Schneider,
Edward Teller, Arthur von Hippel and Victor Weisskopf. Because of this, because of
Bohr’s dynamic and inspiring presence, and because he was able to continue the tradition
of informality, enthusiasm and speed which characterized J.J. Thomson’s Cavendish and
Rutherford’s Manchester laboratories, Bohr’s institute became the world’s most important
center for theoretical physics, especially during the 1930’s.

Bohr was tirelessly energetic. He liked to discuss his ideas in dialogue with one of
the bright young men at his institute, putting forward an idea, and expecting a counter-
argument to be thrown back. It was like a game of ping-pong. In this way, a new idea
could be tested by exploring all of its consequences.

When a new scientist arrived at his institute, Bohr liked to invite the newcomer to
accompany him on a two-day walking tour to his summer house in Tisvilde, about 50



2.4. BOHR’S INSTITUTE OF THEORETICAL PHYSICS 33

kilometers north of Copenhagen. In his autobiographical book “Physics and Beyond”,
Werner Heisenberg describes such a two-man tour together with Bohr. This custom allowed
Bohr to get to know both the personality and the potential scientific contributions of the
new arrival. It also allowed Bohr to get some exercise and to keep himself in good physical
condition.

The Nazi occupation of Denmark

On 9 April, 1940, Nazi Germany invaded and quickly occupied Denmark. The Germans
explained that their purpose was “to protect Denmark from a British invasion”. During
the first three years of occupation the Germans allowed the Danish government, police
force and army to exist. However, in 1943, after extensive sabotage actions by the Danish
resistance movement, the German policy changed and became much harsher.

Shortly after this sudden change, the Danes became aware that their Jewish population
was in danger of being arrested and sent to concentration camps. Luckily it was possible
for Danish citizens to organize a secret rescue operation, in which almost all members of
Denmark’s Jewish community escaped to Sweden in small boats. Among them were Niels
Bohr and his son Aage.

Niels and Aage Bohr fly to England

After some time in Sweden, where he helped to organize aid for Jewish refugees from
Denmark, Niels Bohr and his son Aage flew to England in a small aircraft. It flew at a
high altitude in order to avoid observation. Niels Bohr’s oxygen mask did not fit properly
because of his unusually large head, and he became unconscious. Luckily this was noticed
before anything very serious happened.
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Figure 2.8: The Institute of Theoretical Physics, established by Niels Bohr at
the University of Copenhagen. Today it is known as the Niels Bohr Institute

Figure 2.9: Another view of the Niels Bohr Institute.
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Figure 2.10: Aage Bohr (1922-2008), one of Niels and Margrethe Bohr’s sons.
Together with Ben Mottelson, he was awarded the 1975 Nobel Prize in Physics
for developing a successful theory of the excited states of nuclei.
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Figure 2.11: Ben Roy Mottelson (born in 1926), who shared the 1975 Nobel
Prize in Physics with Aage Bohr. Although now very old, he still comes in to
work at the Niels Bohr Institute.
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Figure 2.12: George de Hevesy (1885-1966), co-discoverer of the element
Haffnium, and pioneer of the use of radioactive tracer elements in biochem-
istry. He received the Nobel Prize in Chemistry in 1943 for work which he
performed at the Niels Bohr Institute. The name “Haffnium” is derived from
the Latin name for Copenhagen.
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2.5 Bohr anticipates the nuclear arms race

After escaping from Denmark to Sweden in a fishing boat in 1943, Niels Bohr and his son
Aage flew to England, and then to Los Alamos in the United States, where work on a
nuclear bomb was in progress. In 1943, a special intelligence unit called “Aslos” had been
set up to determine how far German work on a nuclear bomb had progressed. Advanced
units, entering mainland Europe after D-Day, interviewed captured German scientists and
found that the German program had never come near to producing a nuclear bomb.

The news that the Germans would not produce atomic bombs was classified as a secret.
Nevertheless, it passed through the grapevine to the scientists working on the atomic bomb
project in America; and it reversed their attitude to the project. Until then, they had been
worried that Hitler would be the first to produce nuclear weapons. In 1944, they began to
worry instead about what the American government might do if it came to possess such
weapons.

At Los Alamos, Niels Bohr became the center of discussion and worry about the ethics
of continued work on the bomb project. He was then 59 years old; and he was universally
respected both for his pioneering work in atomic physics, and for his outstandingly good
character.

Bohr was extremely worried because he foresaw a postwar nuclear arms race unless
international control of atomic energy could be established. Consequently, as a spokesman
for the younger atomic scientists, he approached both Roosevelt and Churchill to urge
them to consider means by which international control might be established.

Roosevelt, too, was worried about the prospect of a postwar nuclear armaments race;
and he was very sympathetic towards Bohr’s proposals for international control. He sug-
gested that Bohr travel to England and contact Churchill, to obtain his point of view.

Churchill was desperately busy, and basically unsympathetic towards Bohr’s proposals;
but on May 16, 1944, he agreed to a half-hour interview with the scientist. The meeting
was a complete failure. Churchill and his scientific advisor, Lord Cherwell, spent most of
the time talking with each other, so that Bohr had almost no time to present his ideas.

Although he could be very persuasive in long conversations, Bohr was unable to present
his thoughts briefly. He wrote and spoke in a discursive style, similar to that of Henry
James. Each of his long, convoluted sentences was heavily weighted with qualifications and
dependent clauses. At one point in the conversation, Churchill turned to Lord Cherwell
and asked: “What’s he talking about, physics or politics?”

Bohr’s low, almost whispering, way of speaking irritated Churchill. Furthermore, the
two men were completely opposed in their views: Bohr was urging openness in approach-
ing the Russians, with a view to establishing international control of nuclear weapons.
Churchill, a defender of the old imperial order, was concerned mainly with maintaining
British and American military supremacy.

After the interview, Churchill became worried that Bohr would give away “atomic
secrets” to the Russians; and he even suggested that Bohr be arrested. However, Lord
Cherwell explained to the Prime Minister that the possibility of making atomic bombs,
as well as the basic means of doing so, had been common knowledge in the international
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scientific community ever since 1939.

After his disastrous interview with Churchill, Niels Bohr carefully prepared a memoran-
dum to be presented to President Roosevelt. Realizing how much depended on its success
or failure, Bohr wrote and rewrote the memorandum, sweating in the heat of Washington’s
summer weather. Aage Bohr, who acted as his father’s secretary, typed the memorandum
over and over, following his father’s many changes of mind.

Finally, in July, 1944, Bohr’s memorandum was presented to Roosevelt. It contains the
following passages:

“...Quite apart from the question of how soon the weapon will be ready for use, and
what role it will play in the present war, this situation raises a number of problems which
call for urgent attention. Unless, indeed, some agreement about the control of the new and
active materials can be obtained in due time, any temporary advantage, however great,
may be outweighed by a perpetual menace to human society.”

“Ever since the possibilities of releasing atomic energy on a vast scale came into sight,
much thought has naturally been given to the question of control; but the further the
exploration of the scientific problems is proceeding, the clearer it becomes that no kind
of customary measures will suffice for this purpose, and that the terrifying prospect of a
future competition between nations about a weapon of such formidable character can only
be avoided by a universal agreement in true confidence...”

Roosevelt was sympathetic with the ideas expressed in this memorandum. In an inter-
view with Bohr, he expressed his broad agreement with the idea of international control of
atomic energy. Unfortunately, the President had only a few months left to live.

Roosevelt’s successor, Harry Truman, had not known about the existence of nuclear
weapons before taking office, and he was cautiously feeling his way. Meanwhile, General
Leslie Groves, the military commander of the Los Alamos project, was very anxious to get
credit for ending World War II, rather than being blamed for wasting billions of dollars
of the taxpayers’ money. It was easy for Groves to convince Truman to give the order
to drop bombs on Hiroshima and Nagasaki. Thus Bohr’s efforts to prevent this tragedy
failed, and the postwar nuclear arms race which he anticipated still casts a dark shadow
over the future of human civilization and the biosphere.
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Chapter 3

SCHRÖDINGER’S WAVE
EQUATION

3.1 A wave equation for matter

In 1926, the difficulties surrounding the “old quantum theory” of Max Planck, Albert
Einstein and Niels Bohr were suddenly solved, and its true meaning was understood. Two
years earlier, a French aristocrat, Louis de Broglie, writing his doctoral dissertation at the
Sorbonne in Paris, had proposed that very small particles, such as electrons, might exhibit
wave-like properties. The ground state and higher excited states of the electron in Bohr’s
model of the hydrogen atom would then be closely analogous to the fundamental tone and
higher overtones of a violin string.

Almost the only person to take de Broglie’s proposal seriously was Albert Einstein, who
mentioned it in one of his papers. Because of Einstein’s interest, de Broglie’s matter-waves
came to the attention of other physicists. The Austrian theoretician, Erwin Schrödinger,
working at Zürich, searched for the underlying wave equation which de Broglie’s matter-
waves obeyed.

Schrödinger’s gifts as a mathematician were so great that it did not take him long
to solve the problem. The Schrödinger wave equation for matter is now considered to
be more basic than Newton’s equations of motion. The wave-like properties of matter
are not apparent to us in our daily lives because the wave-lengths are extremely small in
comparison with the sizes of objects which we can perceive. However, for very small and
light particles, such as electrons moving in their orbits around the nucleus of an atom, the
wave-like behavior becomes important.

Schrödinger was able to show that Niels Bohr’s atomic theory, including Bohr’s seem-
ingly arbitrary quantization of angular momentum, can be derived by solving the wave
equation for the electrons moving in the attractive field of the nucleus. The allowed orbits
of Bohr’s theory correspond in Schrödinger’s theory to harmonics, similar to the funda-
mental harmonic and higher overtones of an organ pipe or a violin string. (If Pythagoras
had been living in 1926, he would have rejoiced to see the deepest mysteries of matter
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explained in terms of harmonics!)
Bohr himself believed that a complete atomic theory ought to be able to explain the

chemical properties of the elements in Mendeléev’s periodic system. Bohr’s 1913 theory
failed to pass this test, but the new de Broglie-Schrödinger theory succeeded! Through the
work of Pauli, Heitler, London, Slater, Pauling, Hund, Mulliken, Hückel and others, who
applied Schrödinger’s wave equation to the solution of chemical problems, it became appar-
ent that the wave equation could indeed (in principle) explain all the chemical properties
of matter.

Strangely, the problem of developing the fundamental quantum theory of matter was
solved not once, but three times in 1926! At the University of Göttingen in Germany,
Max Born (1882-1970) and his brilliant young students Werner Heisenberg and Pascal
Jordan solved the problem in a completely different way, using matrix methods. At the
same time, a theory similar to the “matrix mechanics” of Heisenberg, Born and Jordan
was developed independently at Cambridge University by a 24 year old mathematical
genius named Paul Adrian Maurice Dirac. At first, the Heisenberg-Born-Jordan-Dirac
quantum theory seemed to be completely different from the Schrödinger theory; but soon
the Göttingen mathematician David Hilbert (1862-1943) was able to show that the theories
were really identical, although very differently expressed.
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Figure 3.1: Bust of Erwin Schrödinger in the courtyard arcade of the main
building, University of Vienna.
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3.2 Felix Bloch’s story about Schrödinger

There is an interesting story about Erwin Schrödinger’s derivation of his famous wave
equation. According to the solid state physicist Felix Bloch, Peter Debye was chairing a
symposium in Zürich, Switzerland, at which de Broglie’s waves were being discussed. At
one point during the symposium, Debye said: “Well, if there are waves associated with
every particle, there must be a wave equation.” Then, turning to Schrödinger, he said:
“You, Erwin. You’re not doing anything important at the moment. Why don’t you find
the wave equation obeyed by de Broglie’s waves?”

During the following weekend, the whole group started off for a skiing trip. “Come
with us, Erwin!”, they said, but Schrödinger replied: “No, forgive me, I think I will stay
here and work.” By the end of the weekend he had derived his famous non-relativistic
wave equation. He had first tried a relativistic equation (now known as the Klein-Gordon
equation), but had rejected it because he believed that the equation had to be first-order
in time.

Later, Felix Bloch asked Peter Debye, “Aren’t you sorry that you didn’t derive the
wave equation yourself, instead of giving the job to Schrödinger?” Debye replied wistfully,
“At least I was right about the need for a wave equation, wasn’t I?”

3.3 Dirac’s relativistic wave equation

In 1928, P.A.M. Dirac derived a relativistic wave equation that was first-order in time.
To do this, he made use of a set of four anticommuting matrices. Solutions to the Dirac
equation in the absence of external fields also obey the Klein-Gordon equation, which
is second-order in time, the equation that Schrödinger first tried and then abandoned.
Dirac’s relativistic equation explained for the first time many details of the spectrum of
hydrogen, but critics complained that it predicted the existence of negative energy states,
and they asked, “Why don’t the positive energy electrons fall down into these states?”
Dirac replied “Because the negative energy states are all occupied.” ‘But then”, the critics
said, “an extremely energetic photon could create an electron-hole pair!” “Keep looking”,
Dirac answered, “and you will find that it sometimes happens.” Thus, an astonishing
consequence of Dirac’s relativistic wave equation was the prediction of the existence of
antimatter!

Years passed. Then, in 1932, the physicist Carl David Anderson observed in a cos-
mic ray photographic plate an event that confirmed Dirac’s prediction of the existence of
antimatter. A highly-energetic photon was annihilated, and converted into an electron-
antielectron pair. The antielectron was given the name “positron”. Since that time, the
antiparticles of other particles have been discovered, created in high-energy events where
a photon is annihilated and a particle-antiparticle pair created.
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Figure 3.2: Carl David Anderson in 1936.
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Figure 3.3: Louis Victor Pierre Raymond, duc de Broglie, (1892-1987).
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Figure 3.4: Heisenberg in 1933
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Figure 3.5: P.A.M. Dirac, the greatest British physicist of the 20th century. A
memorial inscribed with his relativistic wave equation stands in Westminister
Cathedral, near to the statue of Newton.
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Figure 3.6: Niels Bohr, Werner Heisenberg and Wolfgang Pauli, c. 1935.



52 SCHRÖDINGER’S WAVE EQUATION

Figure 3.7: Peter Debye, (1884-1966).
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3.4 Some equations

The relativistic relationship between energy and momentum

E2 − p2c2 = m2c4 (3.1)

Here E stands for energy, p for momentum, m for mass, and c for the velocity of light.

The Klein-Gordon equation

(
− ~2 ∂2

c2 ∂2t
+ ~2∇2

)
ψ = m2c2ψ (3.2)

The Klein-Gordon equation can be derived from equation 3.1 by making the substitutions

E → ~
i

∂

∂x4

x4 ≡ ict

pj →
~
i

∂

∂xj
j = 1, 2, 3 (3.3)

where ~ is Planck’s constant divided by 2π.

Schrödinger’s non-relativistic wave equation

The non-relativistic relationship between energy and momentum is given by

E = c
√
p2 +m2c2 + V ≈ p2

2m
+ V m2c2 >> p2 (3.4)

Schrödinger’s non-relativistic wave equation,
(
− ~2

2m
∇2 + V

)
ψ = Eψ (3.5)

can be derived by making the substitutions

pj →
~
i

∂

∂xj
j = 1, 2, 3 (3.6)

If the wave function ψ has time-dependence of the form

ψ(x, t) = ψ(x)eiEt/~ (3.7)

then we can write

i~
∂ψ

∂t
= Hψ (3.8)
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where

H ≡
(
− ~2

2m
∇2 + V

)

∇2 ≡
3∑

j=1

∂2

∂x2
j

(3.9)
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Chapter 4

HARMONIC POLYNOMIALS AND
SPHERICAL HARMONICS

4.1 Spherical polar coordinates

Spherical harmonics are very useful in many branches of physics and engineering. They are
especially used when the problem to be solved has spherical symmetry. In our case, we shall
need spherical harmonics to solve the spherically symmetric problem of the Schrödinger
equation for hydrogenlike atoms:

(
− ~2

2me

∇2 − e2Z2

r

)
ψ(x) = Eψ(x) (4.1)

Here me is the electron’s mass, e is its charge, Z is the atomic number of the atom, r is
the distance between the electron and the nucleus, and ~ is Planck’s constant divided by
2π. It is convenient to solve this problem using spherical polar coordinates:

√
x2 + y2 + z2 = r

cos(θ) =
z

r

tan(ϕ) =
y

r
(4.2)

The meaning of r, θ and ϕ is illustrated in the figure shown below.
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Figure 4.1: This figure illustrates the meaning of spherical polar coordinates. In
geography, θ would represent latitude, while ϕ would represent longitude.

4.2 The Laplacian operator in spherical coordinates

The Laplacian operator, ∇2, expressed in terms of spherical polar coordinates, is given by

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

=
1

r2

∂

∂r
r2 ∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂ϕ2
(4.3)

The details of the derivation of this equation are given in Appendix B. As we shall see, the
spherical harmonics Yl,m(θ, ϕ) obey the relationship

∇2Yl,m(θ, ϕ) = − l(l + 1)

r2
Yl,m(θ, ϕ) (4.4)

Thus, if we let

ψ(x) = R(r)Yl,m(θ, ϕ) (4.5)

the Schrödinger equation for hydrogenlike (one electron) atoms is separable:

∇2R(r)Yl,m(θ, ϕ) =

(
1

r2

∂

∂r
r2 ∂

∂r
− l(l + 1)

r2

)
R(r)Yl,m(θ, ϕ) (4.6)

Dividing both sides by Yl,m(θ, ϕ), we find that the radial part of the Schrödinger equation
for one-electron atoms must obey the equation

(
− ~2

2m

1

r2

∂

∂r
r2 ∂

∂r
− e2Z2

r
+
l(l + 1)

r2

)
R(r) = ER(r) (4.7)
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4.3 Homogeneous and harmonic polynomials

Let us consider a 3-dimensional space whose Cartesian coordinates are x, y and z. A
polynomial in these coordinates is defined to be a sum of terms in which the coordinates
are raised to various powers. A polynomial is said to be homogeneous if, in each term, the
sum of the powers is the same as it is in all the other terms. A homogeneous polynomial
h is harmonic if it also obeys the Laplace equation:

∇2h(x, y, z) ≡
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
h(x, y, z) = 0 (4.8)

For example, we can think of the two polynomials

f2 = x2 + y2

h2 = x2 − y2 (4.9)

Both f2 and h2 are homogeneous, but only h2 is harmonic. The reader is invited to invent
a few other polynomials that illustrate this difference.

4.4 Harmonic polynomials and spherical harmonics

Harmonic polynomials are very closely related to spherical harmonics. The order l of a
harmonic polynomial is the sum of the powers to which the coordinates are raised in each
term. Thus, for example, the order of h2 in the previous equation is 2. For each harmonic
polynomial hl, there is a spherical harmonic related to it by

Yl(θ, ϕ) =
hl(x, y, z)

rl
(4.10)

The quantum number m is absent from this relationship because the spherical harmonic
generated in this way is not necessarily an eigenfunction of the operator ∂

∂ϕ
. However

Yl(θ, ϕ) always satisfies the relationship

∇2Yl(θ, ϕ) = − l(l + 1)

r2
Yl(θ, ϕ) (4.11)

The proof is as follows: For any homogeneous polynomial fl of order l,

∇2
(
rβfl

)
= β(β + 2l + 1)rβ−2fl + rβ∇2fl (4.12)

This relationship can be proved directly by carrying out the differentiation:

∇2
(
rβfl

)
=

3∑

j=1

∂

∂xj

(
βrβ−1 ∂r

∂xj
fs + rβ

∂fl
∂xj

)

=
3∑

j=1

[
β(β − 2)rβ−4x2

jfl + βrβ−2fs + 2βrβ−2xj
∂fl
∂xj

+ rβ
∂2fl
∂x2

j

]

= β(β + 2l + 1)rβ−2fl + rβ∇2fl (4.13)
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If the homogeneous function in is also harmonic, then (since ∇2hl = 0)

∇2
(
rβhl

)
= β(β + 2l + 1)rβ−2hl (4.14)

In the special case where β = −l, this becomes

∇2hl
rl

= − l(l + 1)

r2

hl
rl

(4.15)

or, letting Yl = hl/r
l,

∇2Yl = − l(l + 1)

r2
Yl (4.16)

which is what we wanted to prove. Hyperspherical harmonics are the d-dimensional ana-
logues of spherical harmonics. Like 3.dimensional spherical harmonics, they can be gener-
ated from harmonic polynomials.The 4-dimensional hyperspherical harmonics, a table of
which is shown below, are of particular interest because from them, the Fourier transforms
of hydrogenlike atomic orbitals can be generated, as we shall see in Chapter 5.
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Table 4.1: 3-dimensional spherical harmonics, uj ≡ xj
r

j = 1, 2, 3

l m
√

4π Yl,m(u)
√

4π Yl,m(θ, ϕ)

0 0 1 1

1 1 −
√

3
2
(u1 + iu2) −

√
3
2
eiϕ sin(θ)

1 0
√

3u3

√
3 cos(θ)

1 -1
√

3
2
(u1 − iu2)

√
3
2
e−iϕ sin(θ)

2 2 1
2

√
15
2

(u1 + iu2)2 1
2

√
15
2
e2iϕ sin2(θ)

2 1
√

15
2
u3(u1 + iu2) −

√
15
2
eiϕ sin(θ) cos(θ)

2 0 1
2

√
5(3u2

3 − 1) 1
2

√
5 (3 cos2(θ)− 1)

2 -1
√

15
2
u3(u1 − iu2)

√
15
2
e−iϕ sin(θ) cos(θ)

2 -2 1
2

√
15
2

(u1 − iu2)2 1
2

√
15
2
e−2iϕ sin2(θ)
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Table 4.2: 4-dimensional hyperspherical harmonics

λ l m
√

2π Yλ,l,m(u)

0 0 0 1

1 1 1 −
√

2(u1 + iu2)

1 1 0 −2u3

1 1 −1
√

2(u1 − iu2)

1 0 0 2u4

2 2 2
√

3(u1 + iu2)2

2 2 1 −2
√

3u3(u1 + iu2)

2 2 0 −
√

2(u2
1 + u2

2 − 2u2
3)

2 2 −1 2
√

3u3(u1 − iu2)

2 2 −2
√

3(u1 − iu2)2

2 1 1 −2
√

3 u4(u1 + iu2)

2 1 0 2
√

6 u4u3

2 1 −1 2
√

3 u4(u1 − iu2)

2 0 0 3u2
4 − u2

1 − u2
2 − u2

3
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4.5 An angular integration theorem

Theorem
Let

I(n) ≡
∫
dΩ
(x1

r

)n1
(x2

r

)n2

· · ·
(xd
r

)nd
(4.17)

where x1, x2, . . . , xd are the Cartesian coordinates of a d-dimensional space, dΩd is the
generalized solid angle, r is the hyperradius, and Re[nj] > −1, j = 1, 2, 3, ..., d. Then

I(n) =
2

Γ
(
d+n

2

)
d∏

j=1

1

2

(
1 + eiπnj

)
Γ

(
nj + 1

2

)
(4.18)

where

n ≡
d∑

j=1

nj (4.19)

Proof
Consider the integral

∫ ∞

0

dr rd−1e−r
2

∫
dΩ xn1

1 x
n2
2 · · ·xndd =

d∏

j=1

∫ ∞

−∞
dxj x

nj
j e
−x2j (4.20)

The right-hand side of (4.20) can be evaluated and has the form

d∏

j=1

∫ ∞

−∞
dxj x

nj
j e
−x2j =

d∏

j=1

1

2

(
1 + eiπnj

)
Γ

(
nj + 1

2

)
(4.21)

provided that Re[nj] > −1, j = 1, 2, 3, ..., d. The left-hand side of (4.20) can be written
as

∫ ∞

0

dr rd+n−1e−r
2

∫
dΩ

(x1

r

)n1
(x2

r

)n2

· · ·
(xd
r

)nd
=
I(n)

2
Γ

(
d+ n

2

)
(4.22)

Combining equations (4.20)-(4.22), we obtain (4.18), Q.E.D.

Comments
If all the nj’s are zero or positive integers, then (4.18) reduces to

I(n) =





πd/2

2(n/2−1)Γ
(
d+n

2

)
d∏

j=1

(nj − 1)!! if all the nj
′s are even

0 otherwise

(4.23)
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When d = 3, (4.23) becomes

∫
dΩ3

(x1

r

)n1
(x2

r

)n2
(x3

r

)n3

=





4π

(n+ 1)!!

3∏

j=1

(nj − 1)!! all nj
′s even

0 otherwise

(4.24)

while when d = 4, (4.23) tells us that

∫
dΩ4

(x1

r

)n1
(x2

r

)n2
(x3

r

)n3
(x4

r

)n4

=





4π2

(n+ 2)!!

4∏

j=1

(nj − 1)!! all nj
′s even

0 otherwise

(4.25)

Let us now consider a general polynomial (not necessarily homogeneous) of the form:

P (x) =
∑

n

cn x
n1
1 x

n2
2 · · ·xndd (4.26)

Then we have
∫
dΩd P (x) =

∑

n

cn

∫
dΩ xn1

1 x
n2
2 · · ·xndd =

∑

n

cn r
nI(n) (4.27)

It can be seen that equation (4.18) can be used to evaluate the generalized angular integral
of any polynomial whatever, regardless of whether or not it is homogeneous.

The utility of these relationships is very great indeed. They provide a method for
developing the theory of angular momentum and hyperangular momentum which supple-
ments the usual group-theoretical methods. For example, Clebsch-Gordan coefficients and
generalized Clebsch-Gordan coefficients may be generated by means of (4.23), rather than
through equations derived from group theory, which become quite complicated when they
are generalized to d dimensions.



Chapter 5

THE SCHRÖDINGER EQUATION
FOR HYDROGEN

5.1 Separation of the equation

The Schrödinger equation for hydrogenlike (1-electron) atoms is

(
− ~2

2me

∇2 − e2Z2

r

)
ψ(x) = Eψ(x) (5.1)

If we let

ψ(x) = R(r)Yl,m(θ, ϕ) (5.2)

the Schrödinger equation for hydrogenlike (one electron) atoms is separable:

∇2R(r)Yl,m(θ, ϕ) =

(
1

r2

∂

∂r
r2 ∂

∂r
− l(l + 1)

r2

)
R(r)Yl,m(θ, ϕ) (5.3)

Dividing both sides by Yl,m(θ, ϕ), we find that the radial part of the Schrödinger equation
for one-electron atoms must obey the equation

(
− ~2

2m

1

r2

d

dr
r2 d

dr
− e2Z2

r
+
l(l + 1)

r2

)
R(r) = ER(r) (5.4)

where we have made use of the relationship

∇2Yl,m(θ, ϕ) = − l(l + 1)

r2
Yl,m(θ, ϕ) (5.5)

and where we have replaced partial derivatives in the radial equation by ordinary deriva-
tives, since we now have a differential equation in a single variable.
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5.2 Solutions to the radial equation

If we let

ρ ≡ Zr (5.6)

and

ε =
2E

Z2
(5.7)

then the radial equation becomes:

[
1

ρ2

d

dρ
ρ2 d

dρ
− l(l + 1)

ρ2
+

2

ρ
+ ε

]
Rn,l(ρ) = 0 (5.8)

Equation (5.8) has solutions of the form

Rn,l(ρ) = Nn,l ρ
l e−ρ/(n)F [ l + 1− n | 2l + 2 | 2ρ/n) ] (5.9)

where

Nn,l =
Z3/2

2(2l + 1)!

(
(l + n)!

(n− 1− l)!

)1/2(
2

n

)l+2

(5.10)

and where F [a|b|x] is a confluent hypergeometric function:

F [a|b|x] ≡ 1 +
ax

b
+
a(a+ 1)x2

b(b+ 1)2!
+
a(a+ 1)(a+ 2)x3

b(b+ 1)(b+ 2)3!
+ ... (5.11)

The confluent hypergeometric series terminates and reduces to a polynomial when a is a
negative integer. In our case this means that l + 1 − n must be a negative integer, and
thus, for the series to terminate, as is required for finiteness at large values of r, l cannot
exceed n−1. A table of the first few radial wave functions for hydrogenlike atoms is shown
below:
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Table 5.1: Radial wave functions for hydrogenlike atoms

n l Rnl(r)

1 0 e−ZrZ3/2

2 0
e−Zr/2Z3/2(1−Zr

2 )√
2

2 1 e−Zr/2Z3/2Zr
2
√

6

3 0
2e−Zr/3Z3/2

(
2Zr2

27
− 2Zr

3
+1

)
3
√

3

3 1 4
27

√
2
3
e−Zr/3Z3/2

(
1− Zr

6

)
Zr

3 2 2
81

√
2
15
e−Zr/3Z3/2Zr2
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Table 5.2: Atomic orbitals

n l m
√

4πRn,l(r)Yl,m(θ, ϕ)

1 0 0 e−ZrZ3/2

2 0 0
e−Zr/2Z3/2(1−Zr

2 )√
2

2 1 1 − e−Zr/2Z3/2Zr
2
√

6

√
3
2
eiϕ sin(θ)

2 1 0 e−Zr/2Z3/2Zr
2
√

6

√
3 cos(θ)

2 1 -1 e−Zr/2Z3/2Zr
2
√

6

√
3
2
e−iϕ sin(θ)

3 0 0
2e−Zr/3Z3/2

(
2Zr2

27
− 2Zr

3
+1

)
3
√

3

3 1 1 − 4
27

√
2
3
e−Zr/3Z3/2

(
1− Zr

6

)
Zr
√

3
2
eiϕ sin(θ)

3 1 0 4
27

√
2
3
e−Zr/3Z3/2

(
1− Zr

6

)
Zr
√

3 cos(θ)

3 1 -1 4
27

√
2
3
e−Zr/3Z3/2

(
1− Zr

6

)
Zr
√

3
2
e−iϕ sin(θ)
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Table 5.3: Atomic orbitals (continued)

n l m
√

4πRn,l(r)Yl,m(θ, ϕ)

3 2 2 2
81

√
2
15
e−Zr/3Z3/2Zr2 1

2

√
15
2
e2iϕ sin2(θ)

3 2 1 − 2
81

√
2
15
e−Zr/3Z3/2Zr2

√
15
2
eiϕ sin(θ) cos(θ)

3 2 0 2
81

√
2
15
e−Zr/3Z3/2Zr2 1

2

√
5 (3 cos2(θ)− 1)

3 2 -1 2
81

√
2
15
e−Zr/3Z3/2Zr2

√
15
2
e−iϕ sin(θ) cos(θ)

3 2 -2 2
81

√
2
15
e−Zr/3Z3/2Zr2 1

2

√
15
2
e−2iϕ sin2(θ)
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5.3 Fock’s momentum-space treatment of hydrogen

In a brilliant 1935 paper, the Russian physicist V. Fock was able to show that a rela-
tionship exists between 4-dimensional hyperspherical harmonics and the solutions to the
Fourier transformed Schrödinger for hydrogenlike (1-electron) atoms. In direct space, the
Schrödinger equation (in atomic units) for an electron moving in the potential V (x) is

[
−1

2
∇2 + V (x)

]
ψ(x) = Eψ(x) (5.12)

We can let

ψ(x) =
1

(2π)3/2

∫
d3p eip·xψt(p) (5.13)

where

ψt(p) =
1

(2π)3/2

∫
d3x e−ip·xψ(x) (5.14)

Substituting (5.13) into (5.12), we have

1

(2π)3/2

∫
d3p

[
p2

2
+ V (x)− E

]
eip·xψt(p) = 0 (5.15)

We now multiply on the left by e−ip
′·x and integrate over d3x. This gives:

[
p′2

2
− E

]
ψt(p′) =

−1

(2π)3/2

∫
d3p V t(p′ − p) ψt(p) (5.16)

which is the 1-particle Schrödinger equation in reciprocal space. For hydrogenlike atoms,

V (x) = −Z
r

(5.17)

so that from (??),

V t(p) = −
√

2

π

Z

p2
(5.18)

Letting

−2E = k2 (5.19)

and combining (5.16), (5.17) and (5.18), we obtain

[
p′2 + k2

]
ψt(p′) =

Z

π2

∫
d3p

1

|p′ − p|2 ψ
t(p) (5.20)
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Fock then made the transformation:

u1 =
2kp1

k2 + p2
≡ sinχ sin θ cosϕ

u2 =
2kp2

k2 + p2
≡ sinχ sin θ sinϕ

u3 =
2kp3

k2 + p2
≡ sinχ cos θ

u4 =
k2 − p2

k2 + p2
≡ cosχ (5.21)

Here θ and ϕ are the polar angles of the vector p:

p1 = p sin θ cosϕ

p2 = p sin θ sinϕ

p3 = p cos θ (5.22)

while

χ ≡ cos−1

(
k2 − p2

k2 + p2

)
= sin−1

(
2kp

k2 + p2

)
(5.23)

is an angle introduced by Fock in order to transform the integral d3p into an integral over
solid angle in a 4-dimensional space. Fock’s transformation maps the 3-dimensional p-space
onto the surface of a unit sphere in a 4-dimensional space. It is easy to verify from (5.21)
that

u2
1 + u2

2 + u2
3 + u2

4 = 1 (5.24)

From the Jacobian of the transformation from Cartesian coordinates to 4-dimensional
hyperspherical coordinates, one finds that the element of solid angle in the 4-dimensional
space is given by

dΩ = sin2 χ sin θ dχdθdϕ

=

(
2kp

k2 + p2

)2

sin θ dχdθdϕ (5.25)

Comparing this with

d3p = p2dp sin θ dθdϕ (5.26)

and making use of the fact that

dχ

dp
=

2k

k2 + p2
(5.27)
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we have

dΩ =

(
2k

k2 + p2

)3

d3p

d3p =

(
k2 + p2

2k

)3

dΩ (5.28)

Also, from (5.21), we have:

p · p′ =
4k2

(k2 + p2)(k2 + p′2)(u · u′ − u4u′4)

1

|p− p′|2 =
4k2

(k2 + p2)(k2 + p′2)

1

|u− u′|2 (5.29)

Inserting (5.28) and (5.29) into (5.20), we obtain:

[
p′2 + k2

]2
ψt(p′) =

Z

2kπ2

∫
dΩ

(k2 + p2)2

|u′ − u|2 ψt(p) (5.30)

We now let

ψt(p) =
4k5/2

(k2 + p2)2
ϕ(Ω) (5.31)

(As shown in Section 5.3 below, the factor 4k5/2 in the numerator is needed to normalize
ψt(p)). Equation (5.30) then takes on the simple form

ϕ(Ω′) =
Z

2kπ2

∫
dΩ

1

|u′ − u|2 ϕ(Ω) (5.32)

From equation (??), with d = 4 and α = d/2− 1 = 1, we have

1

|u′ − u|2 =
∞∑

λ=0

C1
λ(u · u′) (5.33)

so that (5.32) becomes

ϕ(Ω′) =
Z

2kπ2

∞∑

λ=0

∫
dΩ C1

λ(u · u′) ϕ(Ω) (5.34)

Remembering equation (??) we can rewrite this in the form

ϕ(Ω′) =
Z

2kπ2

∞∑

λ=0

Kλ Oλ[ϕ(Ω)] (5.35)
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For d = 4,

Kλ =
I(0)

λ+ 1
=

2π2

λ+ 1
(5.36)

so that equation (5.35) becomes:

ϕ(Ω′) =
Z

k

∞∑

λ=0

1

λ+ 1
Oλ[ϕ(Ω′)] (5.37)

If ϕ(Ω) is an eigenfunction of Λ2. so that

Oλ′ [ϕ(Ω′)] = δλ′λϕ(Ω) (5.38)

then (5.37) will be satisfied provided that

Z

k(λ+ 1)
= 1 (5.39)

or, from (5.19),

E = −k
2

2
= − Z2

2(λ+ 1)2
= − Z

2

2n2
λ = 0, 1, 2... n = 1, 2, 3... (5.40)

where we have made the identification λ + 1 = n. We can see that Fock’s treatment
gives the usual energy levels for hydrogenlike atoms. For the transformed wave function
ϕ(Ω), any 4-dimensional hyperspherical harmonic will do, but for most applications, it is
convenient to use hyperspherical harmonics of the type shown in Table 2.1. Thus we obtain
the Fourier transformed hydrogenlike orbitals:

ψtn,l,m(p) =
4k5/2

(k2 + p2)2
Yn−1,l,m(Ω4) ≡M(p)Yn−1,l,m(Ω4)

M(p) ≡ 4k5/2

(k2 + p2)2
(5.41)

For the first few values of n, l and m, 5.41 yields:

ψt1,0,0(p) =
2
√

2 k5/2

(k2 + p2)2π

ψt2,0,0(p) =
4
√

2 k5/2(k2 − p2)

(k2 + p2)3π

ψt2,1,−1(p) = −8ik7/2(p1 − ip2)

(k2 + p2)3π

ψt2,1,0(p) = − 8i
√

2 k7/2

(k2 + p2)π

ψt2,1,1(p) =
8ik7/2(p1 + ip2)

(k2 + p2)3π
...

...
...

(5.42)
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To see how Fock’s reciprocal space solutions to the hydrogenlike wave equation are related
to the familiar hydrogenlike orbitals, we can make a table of hydrogenlike orbitals with
Z/n replaced by the constant k. The radial functions become

R′1,0(r) = 2k3/2e−kr

R′2,0(r) = 2k3/2(1− kr)e−kr

R′2,1(r) =
2k3/2

√
3

kr e−kr

R′3,0(r) = 2k3/2

(
1− 2kr +

2k2r2

3

)
e−kr

...
...

... (5.43)

and so on, and the corresponding wave functions will be

χn,l,m(x) = R′n,l(r)Yl,m(Ω3) (5.44)

As you can verify, taking the Fourier transforms of the wave functions defined by equations
(5.43) and (5.44), and making the substitutions shown in equation (5.21), we obtain the
Fourier transformed solutions of V. Fock, equation (5.41). But this set of solutions is not
quite the same as a set of familiar hydrogenlike orbitals because Z/n is everywhere replaced
by the constant k. A set of Fock’s solutions corresponding to a particular value of k is
called a set of Coulomb Sturmians. Such a set obeys a potential-weighted orthonormality
relation, as we will discuss in detail in Chapters 6 and 7.

5.4 The Pauli exclusion principle and the periodic ta-

ble

Bohr himself believed that a complete atomic theory ought to be able to explain the chem-
ical properties of the elements in Mendeléev’s periodic system. Bohr’s 1913 theory failed
to pass this test, but the new de Broglie-Schrödinger theory succeeded! Through the work
of Pauli, Heitler, London, Slater, Pauling, Hund, Mulliken, Hückel and others, who applied
Schrödinger’s wave equation to the solution of chemical problems, it became apparent that
the wave equation could indeed (in principle) explain all the chemical properties of matter.

The solutions to Schrödinger’s wave equation for an electron moving in the field of a
nucleus are called atomic orbitals, and the first few of them are shown in Figure 11.6.They
are analogous to the harmonics of a violin string or an organ pipe, except the they are
three-dimensional. The electron had been shown to have a magnetic moment, and in a
magnetic field, it was found to orient itself either in the direction of an applied magnetic
field, or in the opposite direction - either “spin-up” or “spin-down”. This effect could
be observed in the splitting of the lines in atomic spectra in the presence of an applied
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magnetic field. The “spin” and magnetic moment of electrons were completely explained
in 1928 by P.A.M. Dirac’s relativistic wave equation.

Meanwhile, the Austrian physicist Wolfgang Pauli proposed his famous exclusion prin-
ciple, which explained the periodic table and the chemical properties of the elements.
According to the Pauli exclusion principle, in the lowest energy state of an atom, the elec-
trons fill the atomic orbitals in the order (1s), (2p), (3d), ... Two electrons are allowed in
each linearly independent orbital, one with spin up and the other with spin down. This
leads to the following electron configurations for the elements:

• Hydrogen; (1s); very active metal; valence=1
• Helium; (1s)2; noble (inert) gas; valence=0
• Lithium; (1s)2(2p)1; very active metal; valence=1
• Beryllium; (1s)2(2p)2; metal; valence=2
• Boron; (1s)2(2p)3; less active metal; valence=3
• Carbon; (1s)2(2p)4; intermediate; valence=4
• Nitrogen; (1s)2(2p)5; less active nonmetal; valence=5
• Oxygen; (1s)2(2p)6; nonmetal; valence=6
• Fluorine; (1s)2(2p)7; very active nonmetal; valence=7
• Neon; (1s)2(2p)8; noble gas; valence=0
• Sodium; (1s)2(2p)8(2s)1; very active metal; valence=1

In chemical reactions, the metals tend to give away their outer-shell electrons, while the
non-metals tend to accept electrons. The most active metals, hydrogen, lithium, sodium,
potassium, rubidium and cesium, all have a single electron in their outer shell, and they
tend to give this electron away. The most active nonmetals, fluorine, chlorine, bromine and
iodine, all are missing a single electron to complete their outer shell. We can notice that
common table salt, is a cubic crystal structure formed from Na+ ions and Cl− ions. When
it is dissolved in water, the sodium-chloride crystal dissociates into Na+ ions, complexed
with water molecules and Cl− ions, also forming complexes with water. We see here
the strong tendency of very active metals to give up their outer shell electron and to form
positive ions, while very active nonmetals have an equally strong tendency to form negative
ions. Helium, neon, argon, krypton, and radon, all with completely filled outer shell, are
unreactive noble gases, with no tendency at all to give away or accept electrons or to form
ions.

The Hartree-Fock equations

The application of the Schrödinger equation to our understanding of chemical reactivity
and the periodic table was made quantitative through the work of Douglas Hartree (1897-
1958) and Vladimir A. Fock (1898-1974).

Douglas Hartree was born in Cambridge, England, where his father was a professor
of engineering at Cambridge University and his mother was the mayor of the city. In
his work on the electronic structure of atoms, Hartree visualized the electrons moving
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Figure 5.1: Atomic orbitals.
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Figure 5.2: The periodic table of the elements.
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in both the attractive field of the atomic nucleus and in a repulsive potential produced
collectively by all the electrons. Hartree’s method for treating this problem was to make
an initial guess of the size of the atomic orbitals (Figure 11.6) occupied by the electrons.
He then calculated the repulsive potential that would result, and combined it with the
nuclear attraction potential. Solving the Schrödinger equation for the an electron moving
in this new potential, he obtained a set of improved atomic orbitals, and from these he
could calculate an improved total potential. He continued to iterate this process until the
change resulting from successive iterations became very small, at which point he described
the electrical field in which the electrons moved as being self-consistent. Hartree called
his procedure the Self-Consistent-Field (or SCF) Method. He published his first results in
1927, only a year after Schrödinger’s discovery of his wave equation.

The Russian physicist Vladimir A. Fock was able to refine Hartree’s method by postulat-
ing that the total electronic wave function of an atom or molecule had to be antisymmetric
with respect to the exchange of the coordinates of any two electrons in the system. When
spin was included in the wave function, this requirement led in a natural way to the exclu-
sion principle postulated by Wolfgang Pauli. When combined with Hartree’s SCF method,
Fock’s antisymmetry requirement led to more accurate results and better agreement be-
tween theory and experiment. However, the Hartree-Fock SCF equations were much more
difficult to solve. Later Clemens C.J. Roothaan (1918-2019) converted the Hartree-Fock
equations into a matrix form suitable for solution by digital computers. The method in
use today is thus known as the Hartree-Fock-Roothaan SCF Method. When applied to
molecules, it is called the Hartree-Fock-Roothaan LCAO SCF Method. The LCAO in the
name stands for the fact that molecular orbitals are represented as Linear Combinations
of Atomic Orbitals.



5.4. THE PAULI EXCLUSION PRINCIPLE AND THE PERIODIC TABLE 77

Figure 5.3: Wolfgang Pauli (1900-1958).
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Figure 5.4: Douglas Hartree (1897-1958).
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Figure 5.5: Vladimir A. Fock (1898-1974).
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5.5 Valence bond theory

Lewis structures

In 1916, G.N. Lewis of the University of California, Berkeley, proposed a theory of chemical
bonding in which a pair of electrons, one donated by each of the bonding atoms, together
form a covalent bond. For example, in the hydrogen molecule, H2, one electron is con-
tributed by each of the two hydrogen atoms. Another example of a Lewis structure is the
NO−2 ion shown in Figure 15.2. The outer-shell electrons that do not contribute to bonding
are represented by pairs of dots and are called lone pairs.

Heitler-London theory

The next step in valence bond theory was taken in 1927 by Walter Heitler and Fritz London,
who used Erwin Schrödinger’s wave equation and Wolfgang Pauli’s exclusion principle to
study the covalent bonding of the hydrogen molecule.

Linus Pauling’s contributions

Linus Pauling developed these ideas further by introducing the key concepts of resonance
and orbital hybridization. Pauling’s two famous books, Introduction to Quantum Mechan-
ics, With Applications to Chemistry (with E. Bright Wilson, 1935), and The Nature of the
Chemical Bond (1939) were extremely important and influential, as was Charles Coulson’s
Valence (1952).
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Figure 5.6: Gilbert N. Lewis (1875-1946). He was nominated for the Nobel Prize
in Chemistry 41 times, but never won it.

Figure 5.7: The NO−2 ion, an example of a Lewis structure.
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5.6 Molecular orbital theory

In molecular orbital theory, atomic orbitals shown in in Figure 11.6 are used to build up a
representation of the orbital of an electron moving in a molecule. For example, Figure 15.3
shows a schematic diagram of the LCAO (Linear Combination of Atomic Orbitals) model
of bonding in the H2 molecule. When two hydrogen atoms approach each other, the two
electrons move in an attractive potential produced by both nuclei. Thus the range of their
motion is enlarged. According to the Pauli exclusion principle, both electrons are allowed
to move in this enlarged region, if they have opposite spins. The electronic wave function
in the enlarged region of motion is called a a molecular orbital.

In the LCAO approximation, molecular orbitals are built up from atomic orbitals cen-
tered on the individual atoms of a molecule. For example, suppose that in the H2 molecule
we denote the positions of the two nuclei by X1 and X2. Then we can approximate the
molecular orbitals φσ(x) and φσ∗(x) by symmetric and antisymmetric combinations of the
two atomic orbitals, χ1s(x−X1) and χ1s(x−X2):

φσ(x) = N [χ1s(x−X1) + χ1s(x−X2)]

φσ∗(x) = N ′ [χ1s(x−X1)− χ1s(x−X2)] (5.45)

where N and N ′ are normalizing constants. The symmetric combination is called a bonding
orbital, and in the hydrogen molecule ground state it is doubly occupied, the two electrons
having opposite spin quantum numbers. In the ground state of H2, the antibonding orbital,
φσ∗(x), is unoccupied, as is illustrated schematically in Figure 15.3.

Quantum biochemistry

Erich Hückel devised an extremely simple semiemperical approximation for treating the
highest filled and lowest empty molecular orbitals of flat organic molecules such as benzene,
napthaline, pyradine, guanine, cytosine, etc. Solution to Hüclel’s equations only required
the diagonalization of a small matrix, and this could be done even before the advent of
electronic computers. During World War II, the French scientist Alberte Pullman sat
in a basement room in Paris diagonalizing Hückel matrices with a desk-top mechanical
calculator, while her husband Bernard drove a tank for the Free French forces in North
Africa. After the war Alberte and Bernard Pullman published a pioneering book entitled
Quantum Biochemistry (1963), which opened a new field of research. Meanwhile, the
great Hungarian-American biochemist and physiologist Albert Szent-Györgyi, published
a book entitled Introduction to a Submolecular Biology (1960) in which he explored the
biochemical roles of charge donors and charge acceptors. Charge donors are molecules
whose highest filled molecular orbitals are relatively high in energy while charge acceptors
are molecules are relatively low in energy.

A typical programmable minicomputer or “microprocessor”, manufactured in the 1970’s,
could have 30,000 circuit elements, all of which were contained on a single chip. By 1989,
more than a million transistors were being placed on a single chip; and by 2000, the number
reached 42,000,000.
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Figure 5.8: A schematic diagram of the LCAO (Linear Combination of Atomic
Orbitals) model of bonding in the H2 molecule.

As a result of miniaturization and parallelization, the speed of computers rose expo-
nentially. In 1960, the fastest computers could perform a hundred thousand elementary
operations in a second. By 1970, the fastest computers took less than a second to per-
form a million such operations. In 1987, a massively parallel computer, with 566 parallel
processors, called GFll was designed to perform 11 billion floating-point operations per
second (flops). By 2002 the fastest computer performed 40 at teraflops, making use of
5120 parallel CPU’s.

Computer disk storage has also undergone a remarkable development. In 1987, the
magnetic disk storage being produced could store 20 million bits of information per square
inch; and even higher densities could be achieved by optical storage devices. Storage
density has until followed a law similar to Moore’s law.

In the 1970’s and 1980’s, computer networks were set up linking machines in various
parts of the world. It became possible (for example) for a scientist in Europe to perform
a calculation interactively on a computer in the United States just as though the distant
machine were in the same room; and two or more computers could be linked for perform-
ing large calculations. It also became possible to exchange programs, data, letters and
manuscripts very rapidly through the computer networks.

The exchange of large quantities of information through computer networks was made
easier by the introduction of fiber optics cables. By 1986, 250,000 miles of such cables had
been installed in the United States. If a ray of light, propagating in a medium with a large
refractive index, strikes the surface of the medium at a grazing angle, then the ray undergoes
total internal reflection. This phenomenon is utilized in fiber optics: A light signal can
propagate through a long, hairlike glass fiber, following the bends of the fiber without
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Figure 5.9: Robert Mulliken (1896-1986). His contributions to molecular orbital
theory won him the 1966 Nobel Prize in Chemistry.
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Figure 5.10: Erich Hückel (1896-1980). He developed a very simple semiemper-
ical approximation for treating the highest filled and lowest empty molecular
orbitals of flat organic molecules.
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Figure 5.11: Alberte Pullman (1920-2011).

Figure 5.12: Alberte Pullman with her husband, Bernard.
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Figure 5.13: Linus Pauling (1901-1994). The New Scientist called him one of
the 20 most important scientists in history. He was awarded the Nobel Prize
in Chemistry in 1954 and the Nobel Peace Prize in 1962.
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Figure 5.14: Two-time Nobel Prize winner Linus Pauling, Research Professor at
the Linus Pauling Institute of Science and Medicine, Palo Alto, California, and
E. Bright Wilson, Jr., Professor Emeritus of Chemistry at Harvard University,
provide a readily understandable study of “wave mechanics,” discussing the
Schrödinger wave equation and the problems which can be solved with it. The
book was first published in 1935, and it is still in use today.
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Figure 5.15: Linus Pauling’s famous book, The Nature of the Chemical Bond
and the Structure of Molecules and Crystals. Cornell University Press, 1939.
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Figure 5.16: Clemens C.J. Roothaan (1918-2019). His thesis supervisor, Robert
Mulliken, said of him, “I tried to induce Roothaan to do his Ph.D. thesis on
Hückel-type calculations on substituted benzenes. But after carrying out some
very good calculations on these he revolted against the Hückel method, threw
his excellent calculations out the window, and for his thesis developed entirely
independently his now well known all-electron LCAO SCF self-consistent-field
method for the calculation of atomic and molecular wave functions, now ap-
propriately referred to, I believe, as the Hartree-Fock-Roothaan method”.
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Figure 5.17: Charles Coulson (1910-1974). He was the leader of important quan-
tum chemistry groups, first at Kings College London, and then later at Oxford
University. He was a very tall man, and also a religious one, with a strong
sense of duty. On the day of his death in 1974, he worked until the last minute.
His last words were, “I think I can’t do any more”. His book, Valence, greatly
influenced the development of quantum chemistry.
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Figure 5.18: Per-Olov Löwdin (1916-2000). Prof. Löwdin founded two impor-
tant quantum chemistry groups, one at the University of Uppsala in Sweden,
and another at the University of Florida in Gainsville. Many scientists were in-
troduced to quantum chemistry at his famous Uppsala summer schools, which
often included mountain-climbing expeditions. Prof. Löwdin also founded two
important journals, The International Journal of Quantum Chemistry and
Advances in Quantum Chemistry. He invented a number of mathematical
techniques much used in the field, for example his method for symmetrical
orthogonalization of basis functions.

losing intensity because of total internal reflection. However, before fiber optics could be
used for information transmission over long distances, a technological breakthrough in glass
manufacture was needed, since the clearest glass available in 1940 was opaque in lengths
more than 10 m. Through studies of the microscopic properties of glasses, the problem of
absorption was overcome. By 1987, devices were being manufactured commercially that
were capable of transmitting information through fiber-optic cables at the rate of 1.7 billion
bits per second.
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Figure 5.19: Tjalling C. Koopmans (1910-1985). Born in the Netherlands he
studied mathematics and physics at the University of Utrecht. After publish-
ing his famous theorem in quantum physics, he switched his interest to appli-
cations of mathematics in economics. In 1975, he shared the Nobel Memorial
Prize in Economics for his work in that field. Koopmans’ theorem states that
if we neglect the readjustment of orbitals resulting from ionization, the en-
ergy needed to remove an electron from the kth molecular orbital is just the
eigenvalue of the Fock operator corresponding to that orbital.
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Figure 5.20: Prof. Clemens C. J. Roothaan in the University of Chicago Com-
putation Center (ca. 1964). As computers gained more and more speed and
memory capacity, quantum chemists like Prof. Roothaan have become able to
use progressively more accurate calculational methods. Prof. Roothaan was
my teacher in group theory when I studied at the University of Chicago. I
later had the privilege of knowing him quite well as the result of meeting him
at many quantum chemistry conferences. He and his brother were both in the
Dutch resistance movement against the Nazis during World War II. Although
his brother was killed, Prof. Roothaan survived, and lived an extremely long
and productive life. He lived to be 101. I remember talking with him when
he was a very old man. He told me about a new and powerful computer chip
that he was developing.
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5.7 The Hartree-Fock-Roothaan equations

In the Hartree-Fock-Roothaan method, the wave function is built up from a linear combi-
nation of atomic spin-orbitals χa, located on the various atoms in the molecule:

Φi =
M∑

a=1

χaCa,i (5.46)

The Fock operator is defined by the equation

F (1) ≡ Hc(1) +
N∑

s=1

∫
dτ2Φ∗s(2)

e2

r1,2

(1− P1,2) Φs(2) (5.47)

Here
∫
dτ2 indicates integration over the space and spin coordinates of electron 2, while

Hc(1) is the core Hamiltonian as a function of the space and spin coordinates of electron
1:

Hc(1) = − ~2

2me

∇2
1 + V (1) (5.48)

The operator P1,2 exchanges the space and spin coordinates of electrons 1 and 2:

P1,2Φs(2)Φi(1) ≡ Φs(1)Φi(2) (5.49)

When the Fock operator acts on a filled molecular spin-orbital, it generates a linear com-
bination of filled molecular spin-orbitals:

F (1)Φj(1) =
N∑

i=1

Φi(1)λi,j (5.50)

where N is the number of electrons in the molecule, and where
∫
dτ1Φi(1)F (1)Φj(1) = λi,j (5.51)

is a matrix representation of the Fock operator based on the filled molecular spin-orbitals.
We can bring the Fock operator into a diagonal form by means of a unitary trnsformation.
Letting εk, k = 1, 2, 3, · · · , N be the diagonal elements, we then have:

{F (1)− εk}Φk(1) = 0 k = 1, 2, 3, · · · , N (5.52)

These simultaneous equations are called the Hartree-Fock equations.
The Fock operator F (1)can be expressed in the form

F (1) = Hc(1) +
N∑

s=1

[Js(1)−Ks(1)] (5.53)
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where

Hc(1) ≡ − ~2

2me

∇2
1 + V (1)

Js(1)Φk(2) ≡
∫
dτ2Φ∗s(2)

e2

r1,2

Φs(2)Φk(1)

Ks(1)Φk(2) ≡
∫
dτ2Φ∗s(2)

e2

r1,2

Φs(1)Φk(2) (5.54)

Roothaan’s equations

In his famous Ph.D. thesis, Clemens Roothaan applied the Hartree-Fock equations to the
case where molecular spin-orbitals are represented as linear combinations of atomic spin-
orbitals:

Φk(1) =
M∑

b=1

χa(1)Cb,k (5.55)

Inserting this into the Hartree-Fock equations, multiplying from the left by χ∗a(1) and
integrating over the space and spin coordinates of electron 1, we obtain

M∑

b=1

∫
dτ1χ

∗
a(1) [F (1)− εk]χb(1)Ca,k = 0 (5.56)

or in matrix form
M∑

b=1

[Fa,b − εkSa,b]Cb,k = 0 (5.57)

where

Fa,b ≡
∫
dτ1χ

∗
a(1)F (1)χb(1)

Sa,b ≡
∫
dτ1χ

∗
a(1)χb(1) (5.58)

The matrix Sa,b is a matrix of overlap integrals, and it must be taken into account because
the atomic spin-orbitals are not necessarily othhonormal. Roothaan expressed the Fock
matrix Fa,b in the form

Fa,b = Hc
a,b +

∑

c,d

Pc,dΓ(ab)cd (5.59)

where

Γ(ab)cd ≡
∫
dτ1

∫
dτ2χ

∗
a(1)χ∗c(2)

e2

r1,2

χd(2)χb(1)

−
∫
dτ1

∫
dτ2χ

∗
a(1)χ∗c(2)

e2

r1,2

χd(1)χb(2) (5.60)
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The density matrix Pc,d is defined by the relationship

Pc,d ≡
M∑

i=1

νiC
∗
c,iCd,i (5.61)

where

νi ≡





1 filled spin orbitals

0 empty spin orbitals
(5.62)

In Roothaan’s method, one begins by evaluating and storing the the M ×M ×M ×M
dimensional matrix of integrals Γ(ab)cd. An initial guess of the coefficients Ca,i is then used
to evaluate the core Hamiltonian, overlap and Fock matrices Hc

a,b, Sa,b and Fa,b. By solving
he matrix form of the Hartree-Fock equations, new and improved values of the coefficients
are obtained. The process is repeated many times until it (hopefully) converges to an
accurate self-consistent solution.

5.8 Koopmans’ theorem

A Hartree-Fock-Roothaan calculation gives us a ground state N -electron wave function
∆0 which is totally antisymmetric with respect to the exchange of the space and spin
coordinates of any two electrons. The physicist J.C. Slater introduced a way of writing
such a totally antisymmetric wave function as a determinant in the atomic spin-orbitals.

∆0 = |χµχµ′χµ′′ · · · | ≡
1√
N !

∣∣∣∣∣∣∣∣∣

χµ(x1) χµ′(x1) χµ′′(x1) · · ·
χµ(x2) χµ′(x2) χµ′′(x2) · · ·
χµ(x3) χµ′(x3) χµ′′(x3) · · ·

...
...

...

∣∣∣∣∣∣∣∣∣
(5.63)

involving atomic orbitals of the form

χµ(xi) ≡ χn,l,m,ms(xi) ≡ Rn,l(ri)Yl,m(θi, φi)

{
αi ms = 1/2
βi ms = −1/2

(5.64)

In fact, the Hartree-Fock equations can be derived by assuming that the ground-state wave
function has this form, and then using a variational principle to minimize the energy of
the ground state (see, for example, ([Avery, 1976])). The ground state energy then has the
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form:

E0 =

∫
dτ1

∫
dτ2 · · ·

∫
dτN∆∗0H∆0

=
N∑

s=1

∫
dτ1Φ∗s(1)Hc(1)Φs(1)

+
1

2

N∑

s=1

N∑

t=1

∫
dτ1

∫
dτ2Φ∗s(1)Φ∗t (2)

e2

r1,2

Φt(2)Φs(1)

− 1

2

N∑

s=1

N∑

t=1

∫
dτ1

∫
dτ2Φ∗s(1)Φ∗t (2)

e2

r1,2

Φt(1)Φs(2) (5.65)

The ground-state energy can also be expressed in terms of the core Hamiltonian matrix,
the Fock matrix, and the density matrix, based on atomic orbitals:

E0 =
1

2

M∑

a=1

M∑

b=1

Pa,b
(
Hc
a,b + Fa,b

)
(5.66)

Since M , the number of basis functions, is larger than N , the number of electrons, solutions
to the Hartree-Fock-Roothaan equations give us a number of states greater than the number
of electrons. The lowest N of the resulting molecular orbitals are interpreted as being filled,
while those of higher energy are seen as empty or “virtual” orbitals. If we lift an electron
from a filled orbital to a virtual orbital,we change the occupation numbers, and hence we
also change the density matrix. The resulting change in energy is given by

(∆E)νi→ν′i =
∑

a,b

[
(P ′a,b − Pa,b)Hc

a,b +
1

2

∑

c,d

(P ′a,bP
′
c,d − Pa,bPc,d)Γ(ab)cd

]
(5.67)

In the special case where

ν ′i = νi − δi,k (5.68)

we are removing an electron from the molecule, in other words, turning it into a positive
ion with a single electronic charge. The approximate change in energy is then

∆Ek = −εk (5.69)

where

εk ≡
∫
dτ1Φ∗k(1)Hc(1)Φk(1)

+
1

2

N∑

t=1

∫
dτ1

∫
dτ2Φ∗k(1)Φ∗t (2)

e2

r1,2

Φt(2)Φs(1)

− 1

2

N∑

t=1

∫
dτ1

∫
dτ2Φ∗k(1)Φ∗t (2)

e2

r1,2

Φt(1)Φs(2) (5.70)
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is the eigenvalue of the Fock matrix belonging to the kth spin-orbital. This result is known
as Koopmans’ theorem.

5.9 Electron creation and annihilation operators

We shall now consider an alternative way of representing many-electron wave functions. We
define a set of “electron creation operators”, b†1, b

†
2, b
†
3, · · · corresponding to the 1-electron

spin-orbitals χ1, χ2, χ3, · · · . In this new notation, the Slater determinant

∆ν = |χµχµ′χµ′′ · · · | ≡
1√
N !

∣∣∣∣∣∣∣∣∣

χµ(x1) χµ′(x1) χµ′′(x1) · · ·
χµ(x2) χµ′(x2) χµ′′(x2) · · ·
χµ(x3) χµ′(x3) χµ′′(x3) · · ·

...
...

...

∣∣∣∣∣∣∣∣∣
(5.71)

is represented by

|∆ν〉 = b†µ, b
†
µ′ , b

†
µ′′ , · · · |0〉 (5.72)

We also introduce a set of “electron annihilation operators”, b1, b2, b3, · · · corresponding to
the same set of 1-electron spin-orbitals. When one of these operators acts on an N -electron
state, it produces an (N − 1)-electron state. We also impose the condition that when any
electron annihilation operator acts on the “vacuum state” |0〉, it gives zero.

bµ|0〉 = 0 (5.73)

for all values of µ. The adjoint of this equation has the form

〈0|b†µ = 0 (5.74)

The many-electron wave functions expressed in terms of electron creation and annihilation
operators will be totally antisymmetric with respect to the exchange of the space and
spin coordinates of any two electrons provided that these operators obey the following
“anticomutation relations”:

b†ibj + bjb
†
i = δi,j

b†ib
†
j + b†jb

†
i = 0

bibj + bjbi = 0 (5.75)

The vacuum state is assumed to be normalized, so that

〈0|0〉 = 1 (5.76)

The adjoint of a many-electron state is represented by

〈∆ν | = 〈0| · · · , bµ′′ , bµ′ , bµ (5.77)
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Then, using the anticomutation relations to move the annihilation operators over to the
right, where they annihilate the vacuum state, we find that

〈∆ν |∆ν〉 = 〈0| · · · , bµ′′ , bµ′ , bµ, b†µ, b†µ′ , b†µ′′ , · · · |0〉
= 〈0| · · · , bµ′′ , bµ′ , b†µ′ , b†µ′′ , · · · |0〉
= 〈0| · · · , bµ′′ , b†µ′′ , · · · |0〉

...
...

...

= 〈0|0〉 = 1 (5.78)

so that the many-electron state is properly normalized.

1-electron and 2-electron operators

In our new notation, 1-electron are represented by

F =
∑

i,j

fi,jb
†
ibj (5.79)

where

fi,j ≡
∫
dτ1 χ

∗
i (1)f(1)χj(1) (5.80)

Examples of 1-electron operators are the core Hamiltonian or externally applied electric or
magnetic fields.

By contrast, 2-electron operators involve the interactions of electrons with each other,
an example being the Coulomb repulsion between electrons. In our new notation, 2-electron
operators have the form

G =
1

2

∑

s,t,u,v

gst|uvb
†
sb
†
tbubv (5.81)

where

gst|uv =

∫
dτ1

∫
dτ2χ

∗
s(1)χ∗t (2)g(1, 2)χu(2)χv(1) (5.82)

5.10 Quantum chemistry and the development of com-

puters

Some personal memories of early computers

I hope that readers will forgive me if I tell them of my own personal memories of early
computers:
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When I arrived at Imperial College (then part of the University of London) in 1962,
I worked with a crystallographic group that using the Mercury computer at University
College to do the calculations needed to arrive at molecular structures. This gave me
the chance to use Mercury to do quantum chemical calculations. I always went over to
University College with the crystallographers at night, because time on the computer was
so expensive that we could only afford to use it at night. I would make a bed for myself
out of three rather hard chairs in a row and would try to sleep. At 3 AM or 4 AM they
would wake me up and would say “Now it’s your turn”.

Mercury was as big as a house, but could do far less than a modern laptop. It had
50,000 or so vacuum tubes which required cooling. The cooling system sometimes broke
down, and one or another of the vacuum tubes sometimes failed, so one had to be grateful
for the periods when Mercury was working. Our programs were written on punched tape
in a language called CHLF3. (The letters stood for Cambridge, London, Harwell and
Farnsborough, the four places that had Mercurys). After we had read the paper tape into
the computer, the program was converted into a magnetic form on a rapidly rotating drum,
and then checked against the original input. If it did not check, we had a so-called “drum
parity”, which meant that we had to stop the computer and restart it by hand, using a
bewildering array of manual controls.

After finishing the work on Mercury at 6 AM or so, I would walk home, passing through
the almost-deserted streets of Soho, and seeing pale-faced teenagers who had been up all
night, high on amphetamines. They were sitting on the pavement near an underground
station, waiting for it to open.

After we had used Mercury for two years or so, IBM gave Imperial College one of their
early computers. Using this was much better. Programs for the IBM machine were written
on punched cards. We just went over to the machine with our punched cards and stood
in line to have them read into the computer. Then a few minutes later we were handed a
printout of the output.

The IBM was much better than the machines that were available in eastern Europe, and
for this reason I was contacted by Janos Ladik and his group at the Hungarian Academy of
Science, who proposed a collaboration. We worked together for several years, calculating
the electronic structure of a number of polypeptides and polynucleotides.

In 1965, Janos Ladik invited me to attend a meeting of quantum theorists and computer
scientists from both East and West, held at a town on the Hungarian Puszta, the great
Hungarian plain east of Budapest. Both Charles Coulson and Per-Olov Löwdin were
there, as well as many scientists from the eastern side of the Iron Curtain. At the meeting,
Enrico Clementi spoke about computer programs that he had developed for performing
ab-initio1 calculation of the electronic structure of molecules. Clementi was an important
IBM scientist, and he had his own laboratory with a large computer which he could use
as he liked. The programs that he described to us took hundreds of hours to complete an
electronic structure calculation on a single molecule.

1ab-initio is a Latin expression meaning “from the beginning”. Such programs are completely free of
input parameters based on experiments.
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Figure 5.21: Enrico Clementi (born 1931) explained to us that microminiatur-
ization would soon make computers hundreds of times faster, smaller and less
expensive. He was completely right.

In the question period after Clementi’s lecture, someone from the audience said: “It’s
all right for you, Clementi. You can use hundreds of hours on a single calculation if you
want to, because you are sitting at IBM with your own dedicated computer. But what
about the rest of us? What good are these programs to us?”

Clementi answered: “In a few years, computers will be hundreds of times faster, and
they will also be cheaper.” The audience asked: “And how will this happen?”. Clementi
answered: “Through microminiaturization.” He was completely right. That was exactly
what happened.

The invention of transistors; Microelectronics

The problem of unreliable vacuum tubes was solved in 1948 by John Bardeen, William
Shockley and Walter Brattain of the Bell Telephone Laboratories. Application of quantum
theory to solids had lead to an understanding of the electrical properties of crystals. Like
atoms, crystals were found to have allowed and forbidden energy levels.

The allowed energy levels for an electron in a crystal were known to form bands, i.e.,
some energy ranges with many allowed states (allowed bands), and other energy ranges
with none (forbidden bands). The lowest allowed bands were occupied by electrons, while
higher bands were empty. The highest filled band was called the “valence band”, and the
lowest empty band was called the “conduction band”.

According to quantum theory, whenever the valence band of a crystal is only partly
filled, the crystal is a conductor of electricity; but if the valence band is completely filled
with electrons, the crystal is an electrical insulator. (A completely filled band is analogous
to a room so packed with people that none of them can move.)
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In addition to conductors and insulators, quantum theory predicted the existence of
“semiconductors” - crystals where the valence band is completely filled with electrons, but
where the energy gap between the conduction band and the valence band is very small.
For example, crystals of the elements silicon and germanium are semiconductors. For such
a crystal, thermal energy is sometimes enough to lift an electron from the valence band to
the conduction band.

Bardeen, Shockley and Brattain found ways to control the conductivity of germanium
crystals by injecting electrons into the conduction band, or alternatively by removing elec-
trons from the valence band. They could do this by “doping” the crystals with appropriate
impurities, or by injecting electrons with a special electrode. The semiconducting crystals
whose conductivity was controlled in this way could be used as electronic valves, in place
of vacuum tubes.

By the 1960’s, replacement of vacuum tubes by transistors in electronic computers had
led not only to an enormous increase in reliability and a great reduction in cost, but also
to an enormous increase in speed. It was found that the limiting factor in computer speed
was the time needed for an electrical signal to propagate from one part of the central
processing unit to another. Since electrical impulses propagate with the speed of light,
this time is extremely small; but nevertheless, it is the limiting factor in the speed of
electronic computers.

Integrated circuits

In order to reduce the propagation time, computer designers tried to make the central
processing units very small; and the result was the development of integrated circuits
and microelectronics. (Another motive for miniaturization of electronics came from the
requirements of space exploration.)

Integrated circuits were developed in which single circuit elements were not manufac-
tured separately. Instead, the whole circuit was made at one time. An integrated circuit
is a sandwich-like structure, with conducting, resisting and insulating layers interspersed
with layers of germanium or silicon, “doped ” with appropriate impurities. At the start of
the manufacturing process, an engineer makes a large drawing of each layer. For example,
the drawing of a conducting layer would contain pathways which fill the role played by
wires in a conventional circuit, while the remainder of the layer would consist of areas
destined to be etched away by acid.

The next step is to reduce the size of the drawing and to multiply it photographically.
The pattern of the layer is thus repeated many times, like the design on a piece of wallpaper.
The multiplied and reduced drawing is then focused through a reversed microscope onto
the surface to be etched.

Successive layers are built up by evaporating or depositing thin films of the appropriate
substances onto the surface of a silicon or germanium wafer. If the layer being made is to be
conducting, the surface would consist of an extremely thin layer of copper, covered with a
photosensitive layer called a “photoresist”. On those portions of the surface receiving light
from the pattern, the photoresist becomes insoluble, while on those areas not receiving
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light, the photoresist can be washed away.
The surface is then etched with acid, which removes the copper from those areas not

protected by photoresist. Each successive layer of a wafer is made in this way, and finally
the wafer is cut into tiny “chips”, each of which corresponds to one unit of the wallpaper-
like pattern.

Although the area of a chip may be much smaller than a square centimeter, the chip
can contain an extremely complex circuit. A typical programmable minicomputer or
“microprocessor”, manufactured during the 1970’s, could have 30,000 circuit elements, all
of which were contained on a single chip. By 1986, more than a million transistors were
being placed on a single chip.

As a result of miniaturization, the speed of computers rose steadily. In 1960, the fastest
computers could perform a hundred thousand elementary operations in a second. By 1970,
the fastest computers took less than a second to perform a million such operations. In 1987,
a computer called GF11 was designed to perform 11 billion floating-point operations (flops)
per second.

GF11 (Gigaflop 11) is a scientific parallel-processing machine constructed by IBM.
Approximately ten floating-point operations are needed for each machine instruction. Thus
GF11 runs at the rate of approximately a thousand million instructions per second (1,100
MIPS). The high speed achieved by parallel-processing machines results from dividing a job
into many sub-jobs on which a large number of processing units can work simultaneously.

Computer memories have also undergone a remarkable development. In 1987, the
magnetic disc memories being produced could store 20 million bits of information per
square inch; and even higher densities could be achieved by optical storage devices. (A
“bit” is the unit of information. For example, the number 25, written in the binary system,
is 11001. To specify this 5-digit binary number requires 5 bits of information. To specify
an n-digit binary number requires n bits of information. Eight bits make a “byte”.)

In the 1970’s and 1980’s, computer networks were set up linking machines in various
parts of the world. It became possible (for example) for a scientist in Europe to perform
a calculation interactively on a computer in the United States just as though the distant
machine were in the same room; and two or more computers could be linked for perform-
ing large calculations. It also became possible to exchange programs, data, letters and
manuscripts very rapidly through the computer networks.

Suggestions for further reading

1. Akhlesh Lakhtakia. Models and Modelers of Hydrogen: Thales, Thomson, Ruther-
ford, Bohr, Sommerfeld, Goudsmit, Heisenberg, Schrödinger, Dirac, Sallhofer. World
Scientific, (1996).

2. O’Connor, John J.; Robertson, Edmund F., Erwin Schrödinger, MacTutor History
of Mathematics archive, University of St Andrews.

3. Halpern, Paul. Einstein’s Dice and Schrödinger’s Cat. Perseus Books Group, (2015).
4. Heitler, W. Erwin Schrödinger. 1887-1961. Biographical Memoirs of Fellows of the

Royal Society. 7: 221-226, (1961).



5.10. QUANTUM CHEMISTRY AND THE DEVELOPMENT OF COMPUTERS 105

5. Farmelo, Graham. The Strangest Man: The Hidden Life of Paul Dirac, Quantum
Genius. Faber and Faber, (2009).

6. Dalitz, R. H.; Peierls, R. Paul Adrien Maurice Dirac. 8 August 1902 - 20 October
1984. Biographical Memoirs of Fellows of the Royal Society. 32: 137-185, (1986).

7. Douglas, Sandy, Some Memories of EDSAC 1: 1950-1952, Ann. Hist. Comp., Vol.
1, No. 2, 1980, pp. 98-99, 208.

8. Medwick, Paul A., Douglas Hartree and Early Computations in Quantum Mechanics,
Ann. Hist. Comp., Vol. 10, No. 2, 1988, pp. 105-112.

9. Hartree, D. R., Calculating Machines-Recent and Prospective Developments, Cam-
bridge Univ. Press, Cambridge, UK, 1947.

10. Hartree, D. R., Automatic Calculating Machines, Mathematical Gazette, Vol. 34,
Dec. 1950, pp. 241-252.

11. Graham, L. (1982). The reception of Einstein’s ideas: Two examples from contrasting
political cultures. In Holton, G. and Elkana, Y. (Eds.) Albert Einstein: Historical
and cultural perspectives. Princeton, NJ: Princeton UP, pp. 107-136

12. Fock, V. A. (1964). The Theory of Space, Time and Gravitation. Macmillan.

13. Lewis, G. N. (1916), The Atom and the Molecule, J. Am. Chem. Soc., 38 (4): 762-85,

14. Miburo, Barnabe B. (1993), Simplified Lewis Structure Drawing for Non-science Ma-
jors, J. Chem. Educ., 75 (3): 317

15. Coffey, Patrick (2008). Cathedrals of Science: The Personalities and Rivalries That
Made Modern Chemistry. Oxford University Press.

16. Davenport, Derek A. (1996). The Many Lives of Linus Pauling: A Review of Reviews.
Journal of Chemical Education. 73 (9): A210.
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Chapter 6

PERIODIC SYSTEMS

6.1 The discovery of X-rays

In 1895, while the work leading to the discovery of the electron was still going on, a second
revolutionary discovery was made. In the autumn of that year, Wilhelm Konrad Roentgen
(1845-1923), the head of the department of physics at the University of Würtzburg in
Bavaria, was working with a discharge tube, repeating some of the experiments of Crookes.

Roentgen was especially interested in the luminescence of certain materials when they
were struck by cathode rays. He darkened the room, and turned on the high voltage. As
the current surged across the tube, a flash of light came from an entirely different part
of the room! To Roentgen’s astonishment, he found that a piece of paper which he had
coated with barium platinocyanide was glowing brightly, even though it was so far away
from the discharge tube that the cathode rays could not possibly reach it!

Roentgen turned off the tube, and the light from the coated paper disappeared. He
turned on the tube again, and the bright glow on the screen reappeared. He carried the
coated screen into the next room. Still it glowed! Again he turned off the tube, and
again the screen stopped glowing. Roentgen realized that he had discovered something
completely strange and new. Radiation of some kind was coming from his discharge tube,
but the new kind of radiation could penetrate opaque matter!

Years later, when someone asked Roentgen what he thought when he discovered X-rays,
he replied: “I didn’t think. I experimented!” During the next seven weeks he experimented
like a madman; and when he finally announced his discovery in December, 1895, he was
able to report all of the most important properties of X-rays, including their ability to
ionize gases and the fact that they cannot be deflected by electric or magnetic fields.
Roentgen correctly believed X-rays to be electromagnetic waves, just like light waves, but
with very much shorter wavelength.

It turned out that X-rays were produced by electrons from the cathode of the discharge
tube. These electrons were accelerated by the strong electric field as they passed across
the tube from the cathode (the negative terminal) to the anode (the positive terminal).
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Figure 6.1: Wilhelm Konrad Roentgen (1845-1923). Wellcome Images.
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Figure 6.2: X-ray photograph by W.K. Roentgen. Wellcome Images.

They struck the platinum anode with very high velocity, knocking electrons out of the
inner parts of the platinum atoms. As the outer electrons fell inward to replace these lost
inner electrons, electromagnetic waves of very high frequency were emitted.

On January 23, 1896, Roentgen gave the first public lecture on X-rays; and in this
lecture he demonstrated to his audience that X-ray photographs could be used for med-
ical diagnosis. When Roentgen called for a volunteer from the audience, the 79 year old
physiologist, Rudolf von Kölliker stepped up to the platform, and an X-ray photograph
was taken of the old man’s hand. The photograph, still in existence, shows the bones
beautifully.

Wild enthusiasm for Roentgen’s discovery swept across Europe and America, and soon
many laboratories were experimenting with X-rays. The excitement about X-rays led
indirectly to a third revolutionary discovery - radioactivity.

6.2 Bragg father and son

Sir William Henry Bragg (1862-1942) graduated from Trinity College, Cambridge Univer-
sity. with first class honors in mathematics in 1885. In that year, at the age of 25, he
was appointed Professor of Mathematics and Experimental Physics at the University of
Adelaide in Australia. In 1908, Bragg returned to England after 23 years in Australia.
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Figure 6.3: Max von Laue (1879-1960).
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Figure 6.4: Sir William Henry Bragg (1862-1942). He and his son, Lawrence
Bragg shared the 1915 Nobel Prize in Physics “for their services to the analysis
of crystal structure by means of X-rays”. He studied with J.J. Thomson at
Cambridge University after having won a scholarship to Trinity College in
1885. X-ray crystallography, pioneered by Bragg and his son, has proved to
be enormously important both in chemistry and in biology. It has allowed
us to understand the structure of both organic and inorganic molecules, and
initiated the science of molecular biology.
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Figure 6.5: Sir William Lawrence Bragg (1890-1971).
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Figure 6.6: Bragg’s law of diffraction. Two beams with identical wavelength and
phase approach a crystalline solid and are scattered off two different atoms
within it. The lower beam traverses an extra length of 2d sin θ. Constructive
interference occurs when this length is equal to an integer multiple of the
wavelength of the radiation.

6.3 J.D. Bernal and Dorothy Crowfoot Hodgkin

In England, J.D. Bernal and Dorothy Crowfoot Hodgkin pioneered the application of X-
ray diffraction methods to the study of complex biological molecules. In 1949, Hodgkin
determined the structure of penicillin; and in 1955, she followed this with the structure
of vitamin B12. In 1960, Max Perutz and John C. Kendrew obtained the structures of
the blood proteins myoglobin and hemoglobin. This was an impressive achievement for
the Cambridge crystallographers, since the hemoglobin molecule contains roughly 12,000
atoms.

The structure obtained by Perutz and Kendrew showed that hemoglobin is a long chain
of amino acids, folded into a globular shape, like a small, crumpled ball of yarn. They found
that the amino acids with an affinity for water were on the outside of the globular molecule;
while the amino acids for which contact with water was energetically unfavorable were
hidden on the inside. Perutz and Kendrew deduced that the conformation of the protein
- the way in which the chain of amino acids folded into a 3-dimensional structure - was
determined by the sequence of amino acids in the chain.

In 1966, D.C. Phillips and his co-workers at the Royal Institution in London found
the crystallographic structure of the enzyme lysozyme (an egg-white protein which breaks
down the cell walls of certain bacteria). Again, the structure showed a long chain of amino
acids, folded into a roughly globular shape. The amino acids with hydrophilic groups were
on the outside, in contact with water, while those with hydrophobic groups were on the
inside. The structure of lysozyme exhibited clearly an active site, where sugar molecules
of bacterial cell walls were drawn into a mouth-like opening and stressed by electrostatic
forces, so that bonds between the sugars could easily be broken.
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Figure 6.7: J.D. Bernal, (1901-1971).
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Figure 6.8: Dorothy Crowfoot Hodgkin (1910-1994). She and her mentor J.D
Bernal were great pioneers in the application of X-ray crystallogrography to
determination of the structure of biological molecules, such as proteins. She
was awarded the Nobel Prize in Chemistry in 1964.
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Figure 6.9: Sir John C. Kendrew (1917-1997) with an unfinished model of myo-
globin. He shared the 1962 Nobel Prize in Chemistry with Peruz, Crick, Wat-
son and Wilkins.

6.4 The structure of DNA: Molecular biology

The discovery of the molecular structure of DNA was an event of enormous importance
for genetics, and for biology in general. The structure was a revelation! The giant, helical
DNA molecule was like a twisted ladder: Two long, twisted sugar-phosphate backbones
formed the outside of the ladder, while the rungs were formed by the base pairs, A, T, G
and C. The base adenine (A) could only be paired with thymine (T), while guanine (G) fit
only with cytosine (C). Each base pair was weakly joined in the center by hydrogen bonds
- in other words, there was a weak point in the center of each rung of the ladder - but the
bases were strongly attached to the sugar-phosphate backbone. In their 1953 paper, Crick
and Watson wrote:

”It has not escaped our notice that the specific pairing we have postulated suggests a
possible copying mechanism for genetic material”. Indeed, a sudden blaze of understanding
illuminated the inner workings of heredity, and of life itself.

If the weak hydrogen bonds in the center of each rung were broken, the ladderlike DNA
macromolecule could split down the center and divide into two single strands. Each single
strand would then become a template for the formation of a new double-stranded molecule.

Because of the specific pairing of the bases in the Watson-Crick model of DNA, the two
strands had to be complementary. T had to be paired with A, and G with C. Therefore, if
the sequence of bases on one strand was (for example) TTTGCTAAAGGTGAACCA... ,
then the other strand necessarily had to have the sequence AAACGATTTCCACTTGGT...
The Watson-Crick model of DNA made it seem certain that all the genetic information
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needed for producing a new individual is coded into the long, thin, double-stranded DNA
molecule of the cell nucleus, written in a four-letter language whose letters are the bases,
adenine, thymine, guanine and cytosine.

In 1956, George Emil Palade of the Rockefeller Institute used electron microscopy to
study subcellular particles rich in RNA (ribosomes). Ribosomes were found to consist of
two subunits - a smaller subunit, with a molecular weight one million times the weight of
a hydrogen atom, and a larger subunit with twice this weight.

It was shown by means of radioactive tracers that a newly synthesized protein molecule
is attached temporarily to a ribosome, but neither of the two subunits of the ribosome
seemed to act as a template for protein synthesis. Instead, Palade and his coworkers
found that genetic information is carried from DNA to the ribosome by a messenger RNA
molecule (mRNA). Electron microscopy revealed that mRNA passes through the ribo-
some like a punched computer tape passing through a tape-reader. It was found that
the adapter molecules, whose existence Crick had postulated, were smaller molecules of
RNA; and these were given the name “transfer RNA” (tRNA). It was shown that, as an
mRNA molecule passes through a ribosome, amino acids attached to complementary tRNA
adaptor molecules are added to the growing protein chain.

The solution of the DNA structure in 1953 initiated a new kind of biology - molecular
biology. This new discipline made use of recently-discovered physical techniques - X-
ray diffraction, electron microscopy, electrophoresis, chromatography, ultracentrifugation,
radioactive tracer techniques, autoradiography, electron spin resonance, nuclear magnetic
resonance and ultraviolet spectroscopy. In the 1960’s and 1970’s, molecular biology became
the most exciting and rapidly-growing branch of science.

Since DNA was known to carry the genetic message, coded into the sequence of the four
nucleotide bases, A, T, G and C, and since proteins were known to be composed of specific
sequences of the twenty amino acids, it was logical to suppose that the amino acid sequence
in a protein was determined by the base sequence of DNA. The information somehow had
to be read from the DNA and used in the biosynthesis of the protein.

It was known that, in addition to DNA, cells also contain a similar, but not quite
identical, polynucleotide called ribonucleic acid (RNA). The sugar-phosphate backbone of
RNA was known to differ slightly from that of DNA; and in RNA, the nucleotide thymine
(T) was replaced by a chemically similar nucleotide, uracil (U). Furthermore, while DNA
was found only in cell nuclei, RNA was found both in cell nuclei and in the cytoplasm of
cells, where protein synthesis takes place. Evidence accumulated indicating that genetic
information is first transcribed from DNA to RNA, and afterwards translated from RNA
into the amino acid sequence of proteins.

The crystallographic determination of the structures of DNA and RNA and proteins
opened the way for a new field of science, Molecular Biology, now one of the most rapidly
developing of all research fields.
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Figure 6.10: Maurice Wilkins (1916-2004). He applied to DNA the X-ray diffrac-
tion methods pioneered by Dorothy Hodgkin. It was his work, and that of
Rosalind Franklin, together with Linus Pauling’s model-building methods, that
enabled Crick and Watson to correctly solve the structure of DNA. He shared
the 1962 Nobel Prize in Physiology or Medicine with them.
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Figure 6.11: Rosalind Franklin (1920-1958). It was one of her high-quality
diffraction photographs, taken in Maurice Wilkins’ laboratory, that proved
to be critical for the DNA structure. She might have shared the Nobel Prize
with Wilkins, Crick and Watson, but before this could be considered by the
committee, she died of ovarian cancer.
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Figure 6.12: Francis Crick (1916-2004) and James Dewey Watson (born 1928)
at the Cavendish Laboratory with their model of DNA. After their discovery
of the structure of DNA, it became clear that it was this molecule that carried
genetic information between generations.
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6.5 Direct and reciprocal lattice vectors

In order to understand crystal structure, X-ray diffraction, and the quantum mechanical
treatment of crystals, we can begin by considering a 2-dimensional lattice points in space
defined by the relationship

Rn = n1a1 + n2a2 n1 = 0,±1,±2,±3, · · · n2 = 0,±1,±2,±3, · · · (6.1)

Here a1 and a2 are vectors defining the unit cell of the 2-dimensional system in direct
space. For example, the substance graphite, from which pencil leads are made, consists
of planar arrays in which carbon atoms are tightly bound together in linked hexagonal
arrays. These planes are much more loosely bound together, so it makes sense to treat
each graphite plane by itself. In the case of the 2-dimensional lattice of a graphite plane,
the vectors a1 and a2 are given by

a1 =

{
3

2
d,−
√

3

2
d

}

a2 =
{

0,
√

3d
}

(6.2)

Here d is a small length defining the size of the unit cell. We can also define a reciprocal
lattice, whose points in momentum-space are given by the relationships

Gm = m1b1 +m2b2 m1 = 0,±1,±2,±3, · · · m2 = 0,±1,±2,±3, · · · (6.3)

We would like the function f(r) defined by the Fourier series

f(r) =
∑

m

fme
iGm·r (6.4)

to have the periodicity of the direct lattice. In other words, we would like this Fourier
series to have the property:

f(r + Rn) =
∑

m

fme
iGm·(r+Rn) = f(r) (6.5)

regardless of the values of the coefficients fm. For this to be the case, we require that

eiGm·Rn = 1 (6.6)

a relationship that holds only when

Gm ·Rn = 2πN N = 0,±1,±2,±3, · · · (6.7)

Remembering the definitions of Gm and Rn, we have

(m1b1 +m2b2) · (n1a1 + n2a2) = 2πN N = 0,±1,±2,±3, · · · (6.8)
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Figure 6.13: The arrangement of carbon atoms, tightly bound together in a
graphite plane, like a giant planar molecule.

If

bi · aj = δi,j (6.9)

then the desired relationship will be fulfilled, since any product of integers is also an integer.
We are now able to determine the vectors b1 and b2. In the example of the graphite plane,
the conditions

b1 · a1 = 1

b1 · a2 = 0

b2 · a2 = 1

b2 · a1 = 0 (6.10)

can be solved to yield

b1 =

{
2

3d
, 0

}

b2 =

{
1

3d
,

1√
3 d

}
(6.11)
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Figure 6.14: In a crystal of graphite, the planes interact with each other very
weakly, so it makes sense to treat each plane by itself.

6.6 A Hückel calculation for a graphite plane

We can introduce a basis functions with three indices, |n1, n2, j〉. Here n1 and n2 are the
integers the specify a particular direct lattice vector, Rn = n1a1 + n2a2 that indicates the
position of a particular unit cell. Each unit cell of a graphite plane contains 2 carbon
atoms and the index j = 1, 2 indicates on which of these the basis function is located. In
the Hückel approximation, the matrix elements of the Hamiltonian are given by

〈n′1, n′2, j′|H|n1, n2, j〉 =





α diagonal elements

β nearest neighbors

0 otherwise

(6.12)

Then

Hj′,j(k) =
∑

n1,n2

〈0, 0, j|H|n1, n2, j〉eik·(n1a1+n2a2)

=




α β
{

1 + eik·a1 + eik·(a1+a2)
}

β
{

1 + eik·a1 + eik·(a1+a2)
}

α


 (6.13)

Solving the quadratic equation

det |Hj′,j(k)− Eb(k)δj′,j| = 0 (6.14)
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we find two bands of allowed energy levels:

E±(k) = α± |β| {3 + 2 cos(k · a1) + 2 cos(k · a2) + 2 cos(k · (a1 + a2))} (6.15)

The allowed values of k can be determined by imposing periodic boundary conditions.
Suppose that we impose periodic boundary conditions at the edges of a parallelogram in
the graphite plane, and that the edges are determined by the vector na1 and na2. Then
the parallelogram will contain N = n2 unit cells. The periodic boundary conditions require
that

eink·a1 = 1

eink·a2 = 1 (6.16)

These boundary conditions will be satisfied if

k =
2π

n

{(
m1 −

b1

2

)
+

(
m2 −

b2

2

)}

m1 = 1, 2, 3, · · · , n
m2 = 1, 2, 3, · · · , n (6.17)

Other values of m1 and m2 are possible, but they do not lead to any new independent
solutions.

6.7 3-dimensional crystal lattices

The discussion given above can be extended to 3-dimensional crystal lattices with only a
slight increase in complexity. For 3-dimensional lattices, the direct lattice vectors are given
by

Rn = n1a1 + n2a2 + n3a3 nj = 0,±1,±2,±3, · · · j = 1, 2, 3 (6.18)

While the reciprocal lattice vectors are

Gm = m1b1 +m2b2 +m3b3 mj = 0,±1,±2,±3, · · · j = 1, 2, 3 (6.19)

The relationship

bi · aj = δi,j (6.20)

will be fulfilled if

b1 = 2π
a2 × a3

a1 · a2 × a3

b2 = 2π
a3 × a1

a1 · a2 × a3

b3 = 2π
a1 × a2

a1 · a2 × a3

(6.21)
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where the vector product of two vectors A and B is defined by the relationship:

A×B ≡ {A2B3 − A3B2, A3B1 − A1B3, A1B2 − A2B1} (6.22)

The sum of any two direct lattice vectors Rn and Rn′ is a direct lattice vector, and the
difference between them is also a direct lattice vector. Similarly, if we take the sum
or difference between two reciprocal lattice vectors, Gm and Gm′ . we obtain a reciprocal
lattice vector. These relationships follow from the fact that sums of integers and differences
between integers are always integers.

6.8 Quantum treatment of electrons in crystals

The electrons in a crystal move in a periodic potential of the form

V (r) =
∑

m

Vme
iGm·r (6.23)

where the Fourier coefficients of the potential, Vm depend on the nature of the crystal, and
where the vectors Gm are the appropriate reciprocal lattice vectors. We now introduce a
set of basis functions of the form:

ψk(r) = uk(r)eik·r (6.24)

where uk(r) has the periodicity of the crystal lattice, and can therefore be represented by
the Fourier series:

uk(r) =
∑

m′

um′e
iGm′ ·r (6.25)

6.9 The nearly-free electron approximation

In this approximation we let the basis functions be plane waves, so that

uk(r) =
1√
V

ψk(r) =
1√
V
eik·r (6.26)

where V is the volume of the crystal. Then the matrix elements of the potential between
basis functions are given by

∫
d3x ψ∗k′(r)V (r)ψk(r) ≡ 〈k′|V |k〉

=
1

V

∫
d3x ei(k−k

′)·rV (r)

=
∑

m

Vm
V

∫
d3x ei(k−k

′+Gm)·r (6.27)
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Non-zero matrix elements occur only when k − k′ is exactly equal to a reciprocal lattice
vector. We can use perturbation theory to treat the electrons in a crystal in the nearly-free
electron approximation. Letting

ψk(r) = ψ0
k(r) + ψ1

k(r) + · · · (6.28)

where

ψ0
k(r) =

1√
V
eik·r (6.29)

If the perturbation produced by the potential is small, then the zeroth-order energy is
given by

E0
k =

~2

2me

k · k =
~2k2

2me

(6.30)

just as would be the case for completely free electrons. If we take only the first-order
correction into account, the wave function is given approximately by

ψk(r) = ψ0
k(r) + ψ1

k(r)

=
1√
V
eik·r +

∑

k′ 6=k

〈k′|V |k〉
k′2 − k2

1√
V
eik
′·r (6.31)

while the energy becomes

Ek = E0
k + E1

k + E2
k

=
~2k2

2me

+ 〈k|V |k〉+
2me

~2

∑

k′ 6=k

〈k|V |k′〉〈k′|V |k〉
k′2 − k2

(6.32)

Using the Fourier series expansion of V (r) and remembering that eik
′·r is required to obey

periodic boundary conditions, we can evaluate matrix elements of the potential:

〈k|′V |k〉 =
1

V
∑

m

Vm

∫
d3x ei(k−k

′+Gm)·r

=
∑

m

Vmδk′−k, Gm (6.33)

The matrix elements are zero unless k′ − k is exactly equal to a reciprocal lattice vector.
Substituting this result into our expression for the energies, we obtain:

Ek = E0
k + E1

k + E2
k

=
~2k2

2me

+ V0 +
2me

~2

∑

Gm 6=0

|Vm|2
(k−Gm) · (k−Gm)− k · k (6.34)

The denominator of the second term vanishes when

(k−Gm) · (k−Gm)− k · k = 0 (6.35)

This condition will be fulfilled whenever a vector k touches a plane perpendicularly bisecting
a reciprocal lattice vector. Such a plane is defined to be the boundary of a Brillion zone.
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Figure 6.15: The first, second, third and fourth Brillouin zones in a plane of a
simple cubic reciprocal lattice.

Figure 6.16: The first Brillouin zone in the reciprocal lattice of a face-centered
crystal.

The band gap at the edge of a Brillion zone

As we approach the boundary of a Brillion zone (i.e as we approach a plane perpendicularly
bisecting a reciprocal lattice vector), the effect of the periodic potential V (r) becomes
more and more pronounced. Finally, very near to the boundary, the perturbation series
fails to converge. ear to the boundary, we can approximate the wave function by a linear
combination of two nearly degenerate zeroth-order wave functions:

ψk,m(r) = C1
1√
V
eik·r + C2

1√
V
eik·(r+Gm) (6.36)

Then
(
− ~2

2me

∇2 + V (r)− Ek.m
)(

C1
1√
V
eik·r + C2

1√
V
eik·(r+Gm)

)
= 0 (6.37)

Multiplying from the left by e−ik·r and integrating over the volume of the crystal, and then
doing the same with eik·(r+Gm), we obtain two simultaneous equations which will have a
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solution provided that the secular determinant vanishes

det

∣∣∣∣∣∣∣∣∣∣∣∣

~2k2
2me

+ V0 − Ek,m Vm

Vm
~2k2
2me

+ V0 − Ek,m

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (6.38)

Thus, finally, we obtain the energy at the Brillouin zone boundary

Ek,m =
~2k2

2me

+ V0 ± Vm (6.39)

and we see that the band gap is 2Vm.

6.10 Molecular crystals

A molecular crystal is a weakly-bound periodic arrangement of tightly-bound constituent
molecules. Examples are crystals of benzene or naphthalene. The low melting point of
benzene reflects the small amount of energy required to separate the benzene molecules
from one another. A much larger amount of energy would be needed to break the covalent
bonds of all the benzene rings.

The wave function of the electrons in a molecular crystal can be built from products of
the wave functions of the individual molecules. Suppose that we have found wave functions
representing the ground state and an excited state of an isolated constituent molecule. We
might do this by means of the Hartree-Fock SCF method, in which case the wave function
of the isolated molecule would be antisymmetrized. In molecular crystals, overlap of wave
the wave functions of neighboring molecules can be neglected, so antisummetrization over
the entire crystal is unnecessary. The basis functions used to build up the electronic wave
function of a molecular crystal in the Frenkel exciton picture can be simple products of
wave functions of the constituent molecules.

We can separate the Hamiltonian of the crystal into two parts, H0 and H′, where H0

represents the Hamiltonian of the individual molecules, while H′ represents the interaction
between them. Our basis set will consist of eigenfunctions of H0. Let

|0〉 = ∆0(1)∆0(2) · · ·∆0(N) (6.40)

represent the eigenfunction of H0 with all N subunits in their ground state, and let

|n〉 = ∆0(1)∆0(2) · · ·∆ζ(n) · · ·∆0(N) (6.41)

represent the eigenfunction of H0 with all the subunits in their ground states except the
nth subunit, which is in its ζth excited state. In the simplest approximation, we can say
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that the effect of H′ is to hybridize the N degenerate states of the form shown in equation
(6.41). We can try to build up eigenfunctions of the complete Hamiltonian, H = H0 + H′

from linear combinations of these basis functions:

|k〉 =
N∑

n=1

|n〉〈n|k〉 (6.42)

In order that |k〉 should be an eigenfunction of H, we require that

N∑

n=1

〈n′|H|n〉〈n|k〉 = Ek〈n′|k〉 (6.43)

Inserting the trial solution

〈n|k〉 =
1√
N

eik·an (6.44)

into equation (6.43), we obtain

Ek =
N∑

n=1

〈n′|H|n〉 eik·(an−an′ ) (6.45)

because of the translational symmetry of the crystal, the lattice sum shown in equation
(6.45) depends only on the relative distance, an′−an, except at the surfaces of the crystal,
where special boundary conditions must be imposed. Written out in full, the wave function
of the ζ-band is

|k, ζ〉 =
1√
N

N∑

n=1

∆0(1)∆0(2) · · ·∆ζ(n) · · ·∆0(N) eik·an (6.46)

Here k is called the “exciton wave number”, while ζ is called the “band index”. States of
this kind were introduced by J. Frenkel and R. Peierls to explain the optical properties of
molecular crystals, and they have become known as “Frenkel exciton states”. A Frenkel
exciton state is an excited state of the entire crystal. All of the electrons are involved, and
the excited state is delocalized, although each electron is localized on its own monomeric
subunit.

The Frenkel exciton picture can be used to describe collective excited states of polymers,
provided that they have translational symmetry, and also to describe arrays of atoms, if
the atoms are sufficiently separated so that orbital overlap between them can be neglected.

6.11 Periodic boundary conditions

In solid state theory, periodic boundary conditions (sometimes called “Born-von Kárman
boundary conditions”) are often used. These boundary conditions restrict the allowed
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values of the wave number k. Suppose, for example, we are using the Frenkel exciton
picture to describe the collective excited states of a polymer with N subunits. Then the
wave number k is not a vector, but reduces simply to a number, k. If we require that

eika1 = eikaN+1 (6.47)

This is the same as requiring that

eikaN+1

eika1
= eik(aN+1−a1) = eikL = 1 (6.48)

where L is the length of the polymer. This condition will be fulfilled if

k =
2πj

L
j = 1, 2, · · · , N (6.49)

No new linearly independent states are produced if higher values of the integer j are used.
For a cubic crystal consisting of N3 molecules, periodic boundary conditions require that

kx =
2πjx
L

jx = 1, 2, · · · , N

ky =
2πjy
L

jy = 1, 2, · · · , N

kz =
2πjz
L

jz = 1, 2, · · · , N (6.50)

assuming that the crystal is also cubic in shape, so that each side has length L

(6.51)

6.12 Homogeneous boundary conditions

For cases where only interactions between nearest neighbors are important, another type of
boundary condition (called “homogeneous”) is often used. Homogeneous boundary condi-
tions are especially appropriate for small systems, such as small polymers. For an oligomer,
where only nearest-neighbor interactions are important, the set of secular equations to be
solved have the form

(α− Ek)〈1|k〉+ β〈2|k〉 = 0

β〈1|k〉+ (α− Ek)〈2|k〉+ β〈3|k〉 = 0

β〈2|k〉+ (α− Ek)〈3|k〉+ β〈4|k〉 = 0

β〈3|k〉+ (α− Ek)〈4|k〉+ β〈5|k〉 = 0

β〈4|k〉+ (α− Ek)〈5|k〉+ β〈6|k〉 = 0
...

...
...

β〈N − 1|k〉+ (α− Ek)〈N |k〉 = 0 (6.52)
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where β represents the nearest-neighbor interaction energy, while α is the energy of an
isolated monomer. The symmetry of this set of secular equations is spoiled by the lack
of coupling to anything at the two ends of the polymer. We can, however, restore the
symmetry by adding a fictitious monomer at each end so that the equations become

β〈0|k〉+ (α− Ek)〈1|k〉+ β〈2|k〉 = 0

β〈1|k〉+ (α− Ek)〈2|k〉+ β〈3|k〉 = 0

β〈2|k〉+ (α− Ek)〈3|k〉+ β〈4|k〉 = 0

β〈3|k〉+ (α− Ek)〈4|k〉+ β〈5|k〉 = 0

β〈4|k〉+ (α− Ek)〈5|k〉+ β〈6|k〉 = 0
...

...
...

β〈N − 1|k〉+ (α− Ek)〈N |k〉+ β〈N + 1|k〉 = 0 (6.53)

and requiring that

〈0|k〉 = 〈N + 1|k〉 = 0 (6.54)

The set of secular equations (6.53), together with the boundary conditions (6.54), have
normalized solutions of the form

〈n|k〉 =

√
1

N + 1
sin(nkd) (6.55)

where

d = an+1 − an (6.56)

is the lattice spacing. The homogeneous boundary conditions require that

(N + 1)kd = π (6.57)

so that we obtain N linearly-independent states, with

kd =
π

N + 1
,

2π

N + 1
, · · · , Nπ

N + 1
(6.58)

Notice that regardless of whether we use periodic boundary conditions or homogeneous
boundary conditions, we obtain the correct number of linearly independent eigenstates of
the total Hamiltonian. We start with a set of N -fold degenerate basis functions, and the
inter-monomeric interactions split these into a band of N exciton states. For a polymer
treated with homogeneous boundary conditions, the exciton energies are

Ek = α + 2β cos(kd) (6.59)

This expression also holds for a polymer treated with periodic boundary conditions, but
the allowed values of k are slightly different, being given by (6.49) rather than (6.58).
Similar results are obtained in the case of 3-dimensional crystals.



144 QUANTUM THEORY

6.13 Taylor series expansion of the inter-monomer in-

teraction

The unperturbed Hamiltonian of a molecular crystal or polymer can be written in the form

H0 =
N∑

n=1

H(n) (6.60)

where

H(n)∆0(n) = E0∆0(n) n = 1, 2, · · · , N
H(n)∆ζ(n) = Eζ∆ζ(n) n = 1, 2, · · · , N (6.61)

These eigenstates if the unperturbed Hamiltonian are orthonormal, and so we have the
relationships

∫
dτn∆∗0(n)∆0(n) = 1

∫
dτn∆∗ζ(n)∆ζ(n) = 1

∫
dτn∆∗ζ(n)∆0(n) = 0 (6.62)

We now introduce the 6-fold Taylor series expansion

1

|xi − xj|
=

(
1 + (xi − an)

∂

∂an
+ · · ·

)(
1 + (xj − an′)

∂

∂an′
+ · · ·

)
1

|an − an′ |
= (6.63)

We then obtain, as the leading nonzero term in the inter-monomer interaction:

〈n′|H′|n〉 =
Dn ·Dn′

R3
− 3(Dn ·R)(Dn′ ·R)

R5
(6.64)

where

R ≡ an − an′ (6.65)

and

Dn ≡ e
∑

j

∫
dτn∆∗ζ(n)(xj − an)∆0(n) (6.66)

the sum being taken over all the electrons in the nth monomer. The quantity Dn is called
the “transition dipole moment”.
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6.14 X-ray diffraction experiments

It can be shown that if the electron density ρ(r) in a crystal is represented by the Fourier
series:

ρ(r) =
∑

m

Fme
iGm·r (6.67)

then the intensity of an X-ray with wave number k scattered into a state with wave number
k′ is given by

I(k− k′) ∼ |Fm|2 (6.68)

The phase problem

In diffraction experiments, Fm is not measured, but only a quantity proportional to |Fm|2,
and thus Fm is determined only up to a constant of proportionality and a phase factor.
A common method for overcoming this difficulty is to guess the atomic positions in a
crystal, and then assume that the atoms are relatively unaffected by the presence of their
neighbors. In this way, a trial electron denstiy distribution ρ(r) can be calculated, and
hence the Fourier coefficients Fm. The calculated diffraction intensities thus generated can
be compared with those experimentally observed. The atomic positions in the model are
then changed slightly, and the comparison process is repeated and refined until a good fit
is obtained. Very similar considerations also hold for electron diffraction experiments and
neutron diffraction experiments.
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Chapter 7

HARMONIC OSCILLATORS

7.1 Normal modes

Let us consider the small vibrations of a classical system of particles about the equilibrium
positions. Suppose that the kinetic energy of the system is given by

T =
1

2

d∑

i=1

d∑

j=1

miδi,j
dxi

dt

dxj

dt
(7.1)

while the leading term in a Taylor series expansion of the potential energy has the form

V =
1

2

d∑

i=1

d∑

j=1

Vi,jx
ixj (7.2)

The coordinates x1, x2 · · · , xd, which represent small displacements from the equilibrium
positions of the particles, are by no means the most convenient ones for solving the equa-
tions of motion of the system. We can bring the kinetic energy into a more convenient
form by going over to the mass-weighted coordinates defined by

X i ≡ √mi x
i i = 1, 2, · · · , d (7.3)

In terms of these coordinates, the kinetic energy has the form

T =
1

2

d∑

i=1

d∑

j=1

δi,j
dX i

dt

dXj

dt
(7.4)

while the potential energy becomes

V =
1

2

d∑

i=1

d∑

j=1

Vi,j√
mimj

X iXj (7.5)

147
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The mass-weighted coordinates are still not the most convenient ones that we can find,
since the potential energy matrix Vi,j may contain off-diagonal terms. and we would like
to get rid of these. We can find a unitary transformation which diagonalizes Vi,j/

√
mimj

by solving the secular equations

d∑

j=1

(
Vi,j√
mimj

− V(k)δi,j

)
Uj,k = 0 (7.6)

Having performed the diagonalization, we can express the potential energy and the kinetic
energy of the system in terms of the normal coordinates defined by

qk =
d∑

i=1

X iUi,k =
d∑

i=1

√
mi x

iUi,k (7.7)

When we do this, the kinetic energy retains its diagonal form because of the unitarity of
Uj,k:

T =
1

2

d∑

k=1

(
dqk

dt

)2

(7.8)

but the off-diagonal terms in the potential energy disappear:

V =
1

2

d∑

k=1

V(k)(qk)2 (7.9)

From (7.8) and (7.9) we can see that the Lagrangian of the system can be written in the
form

L = T − V =
d∑

k=1

Lk (7.10)

where

Lk =
1

2

[(
dqk

dt

)2

− V(k)(qk)2

]
(7.11)

The canonically conjugate momentum paired with the coordinate qk is defined in mechanics
to be

pk =
∂L

∂q̇k
=
dqk

dt
(7.12)

he Hamiltonian of the system can be written in the form

H = T + V =
d∑

k=1

Hk (7.13)
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where

Hk =
1

2

(
p2
k + ω2

kq
2
k

)
(7.14)

and

ωk =
√
V(k) (7.15)

In other words, when the Hamiltonian which represents small vibrations of a classical sys-
tem is expressed in terms of the normal coordinates (or normal modes), it reduces to a
sum of simple harmonic oscillator Hamiltonians. The normal coordinates are found by di-
agonalizing the mass-weighted potential energy matrix. The harmonic oscillator frequency
of each is found by taking the square root of the corresponding eigenvalue of the mass-
weighted potential energy matrix.

To illustrate this procedure, we can think of a system, whose Lagrangian is given by

1

2

d∑

i=1

d∑

j=1

(
m δi,j

dxi

dt

dxj

dt
− Vi,jxixj

)
(7.16)

where

Vi,j =

{
2κ i = j

−κ i = j ± 1
(7.17)

This Lagrangian corresponds to a linear system of point masses, each joined elastically to
the next. Then the secular equations (7.6) have the form

−κUk−1,k + [2κ− V(k)]Uk,k − κUk+1,k = 0 k = 2, . . . , d− 1 (7.18)

The trial solution

Uj,k =

√
2

d+ 1
sin(jka) (7.19)

makes all of the secular equations redundant, All of them redundantly require that

V(k) = κ [1− cos(ka)] (7.20)

Imposing homogeneous boundary conditions (i.e clamping the two ends of the line) restricts
the allowed values of k, and we must have

k =
π

(d+ 1)a
,

2π

(d+ 1)a
, · · · , πd

(d+ 1)a
(7.21)
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where (d+ 1)a is the length of the chain. The frequency spectrum of the normal modes is
given by

ωk =

√
V(k)

m
=

√
2κ [1− cos(2ka)]

m
(7.22)

In terms of the normal mode coordinates and their time derivatives, the Lagrangian of the
system becomes

L =
1

2

∑

k

[(
dqk
dt

)2

− (ωkqk)
2

]
(7.23)

which can be recognized as a sum of harmonic oscillator Lagrangians.

7.2 Molecular vibrations and rotations

In the simplest possible approximation, we can regard a molecule (or a cluster in a non-
melted state) as a collection of point masses held together by springlike bonds. When
we calculate the normal modes of such a system, we always find that there are six zero-
frequency modes. Three of these correspond to the degrees of freedom associated with
translation of the whole system, and three with rotation. Let us use the symbols Rs to
represent the equilibrium position of the atom s, and xs to represent the displacement of
the atom from its equilibrium position. Then in our simple model, the classical potential
energy of the molecule can be written in the form

V =
1

2

N∑

t>s

N∑

s=1

kst (|xs + Rs − xt −Rt| − |Rs −Rt|)2 (7.24)

Here kst represents the force constant of the “spring” which connects atom s with atom t.
Let us also introduce the notation

Rst ≡ Rs −Rt

xst ≡ xs − xt (7.25)

Then, if we assume that |xst| << |Rst| and expand V in a Taylor series, we obtain the
leading term

V ≈
N∑

t>s

N∑

s=1

kst
|Rst|2

(Rst · xst)2

≡ 1

2

N∑

t>s

N∑

s=1

3∑

µ=1

3∑

ν=1

Vs,µ;t,νxs,µxt,ν (7.26)
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where

xs ≡ (xs1, xs2, xs3) (7.27)

By diagonalizing the mass-weighted potential energy matrix

Vs,µ;t,ν√
msmt

(7.28)

we can find the normal modes of the system, and as mentioned, six of them will be zero-
frequency modes corresponding to translations and rotations of the entire system.

7.3 Commutation relations

Let us consider a simple harmonic oscillator whose Hamiltonian is given by

H =
1

2

(
p2 + ω2q2

)
(7.29)

We can go over to a quantum treatment of the harmonic oscillator by letting let

p = −i~ ∂
∂q

(7.30)

so that

[p, q] ≡ pq − qp = −i~ (7.31)

Thus

[H, p] =
ω2

2

[
q2, p

]
=
ω2

2
(q [q, p] + [q, p] q) = i~ω2q (7.32)

and similarly

[H, q] =
1

2

[
p2, q

]
=

1

2
(p [p, q] + [p, q] q) = i~p (7.33)

Now suppose that |n〉 is an eigenfunction of H, so that

H|n〉 = En|n〉 (7.34)

If we act on such an eigenfunction with an operator of the form p± iωq, then we can show
by means of the commutation relations that the result is also an eigenfunction of H:

H(p+ iωq)|n〉 = {[H, p] + iω[H, q] + (p+ iωq)H} |n〉
=

{
i~ω2q + iω(−i~p) + (p+ iωq)En

}
|n〉

= {(En + ~ω)(p+ iωq)} |n〉 (7.35)
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and

H(p− iωq)|n〉 = {[H, p]− iω[H, q] + (p− iωq)H} |n〉
=

{
i~ω2q − iω(−i~p) + (p− iωq)En

}
|n〉

= {(En − ~ω)(p− iωq)} |n〉 (7.36)

These equations show that (p±iωq)|n〉 is an eigenfunction of H corresponding to the raised
or lowered energy En ± ~ω. The operator p+ iωq is thus a “raising operator” (sometimes
called a “creation operator”). When it acts on an eigenfunction of the harmonic oscillator
Hamiltonian H, it produces another eigenfunction of H, whose energy is raised by an
amount ~ω. Similarly, p− iωq can be thought of as a “lowering operator”, or ”annihilation
operator”. Acting on an eigenfunction of H. it produces another eigenfunction, whose
eigenvalue is lowered by an amount ~ω.

If we continue to act on an eigenfunction of H with the lowering operator p− iωq, we
must eventually reach the ground state, a state whose energy cannot be lowered further.
Since it cannot lower the energy of the ground state, the lowering operator must give zero
when it acts on it. Thus we have the relationship:

(p− iωq)|0〉 = 0 (7.37)

where |0〉 represents the ground state. If we next act on this equation from the left with
the raising operator, we obtain:

(p+ iωq)(p− iωq)|0〉 =
(
p2 + ω2q2 + iω[p, q]

)
|0〉

= (2H − ~ω) |0〉
= (2E0 − ~ω) |0〉 = 0 (7.38)

and thus

E0 =
1

2
~ω (7.39)

Combining this with our previous results, we obtain the entire energy spectrum of a quan-
tum harmonic oscillator:

En =

(
n+

1

2

)
~ω n = 0, 1, 2, 3, · · · (7.40)

7.4 Phonon creation and annihilation operators

It is convenient to define a normalized raising operator, which we shall call a “creation
operator”:

a† ≡ −iN(p+ iωq) (7.41)
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and a normalized lowering operator, which we shall call an “annihilation operator”:

a ≡ iN(p− iωq) (7.42)

The normalizing constant, N, is chosen in such a way that

a†|n〉 =
√
n+ 1|n+ 1〉 (7.43)

and

a|n+ 1〉 =
√
n+ 1|n〉 (7.44)

Then

aa†|n〉 =
√
n+ 1a|n+ 1〉 = (n+ 1)|n〉

= N2(p− iωq)(p+ iωq)|n〉
= N2 {2H + iω[p, q]} |n〉
= N2(n+ 1)2~ω|n〉 (7.45)

Solving for the normalization constant, we obtain

N =
1√
2~ω

(7.46)

Thus

a† =
−i√
2~ω

(p+ iωq)

a =
i√
2~ω

(p− iωq) (7.47)

We can also express p and q in terms of the creation and annihilation operators:

p = i

√
~ω
2

(a† − a)

q = −i
√

~ω
2

(a† + a) (7.48)

We can see from these relationships that the creation and annihilation operators obey the
commutation rules:

[a, a†] = 1 (7.49)

[a, a] = 0 (7.50)

[a†, a†] = 0 (7.51)
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The operator a†a is called the “number operator”, since it is easy to show from the rela-
tionships given above that

a†a|n〉 = n|n〉 (7.52)

We can also note that the harmonic oscillator Hamiltonian can be written in the form:

H = ~ω
(
a†a+

1

2

)
(7.53)

7.5 Collections of harmonic oscillators

Let us now consider a system whose Hamiltonian is a sum of simple harmonic oscillator
Hamiltonians:

H =
∑

k

Hk =
∑

k

(
p2
k + ω2

kq
2
k

)
=
∑

k

~ωk
(
a†kak +

1

2

)
(7.54)

The commutation relationships for the momenta and coordinates of the system are

[pk, qk′ ] = −i~δk,k′ (7.55)

[pk, pk′ ] = 0 (7.56)

[qk, qk′ ] = 0 (7.57)

while those of the creation and annihilation operators are

[ak, a
†
k′ ] = δk,k′ (7.58)

[a†k, a
†
k′ ] = 0 (7.59)

[ak, ak′ ] = 0 (7.60)

The eigenfunctions of the total Hamiltonian are products of simple harmonic oscillator
eigenfunctions. If we use the symbol |n1, n2, n3, · · · 〉 to represent such an eigenfunction,
then we can write:

H|n1, n2, n3, · · · 〉 = En1.n2.n3,···|n1, n2, n3, · · · 〉

=
∑

k

~ωk
(
nk +

1

2

)
|n1, n2, n3, · · · 〉 (7.61)



Chapter 8

THE DIRAC EQUATION

8.1 Lorentz invariance and 4-vectors

Albert Einstein’s special theory of relativity was built on the negative result of the Michaelson-
Morley experiment, an experiment that attempted to measure the absolute velocity of the
earth through space. Einstein boldly postulated that no experiment whatever can measure
absolute motion, that is to say, according to his postulate it is impossible for an observer
to know whether he is in a state of rest or in a state of uniform motion. All inertial frames
are equivalent. Einstein’s postulate has been amply confirmed by experiment, and today
it is one of the basic principles of modern physics.

The equivalence of all inertial frames can be expressed in another way: Every funda-
mental physical law must exhibit symmetry between the space and time coordinates in such
a way that ict enters on the same footing as the Cartesian coordinates x, y and z. (Here
i ≡
√
−1, while c is the velocity of light, and t is the time.) In relativistic theory, space

and time combine to form a pseudo-Euclidean space-time continuum (Minkowski space). A
transformation from one inertial frame to another (a Lorentz transformation) corresponds
to a rotation in this space, and such a transformation must leave all fundamental physical
laws invariant in form.

Every physical quantity that is represented by a 3-component vector in non-relativistic
theory has a 4th component in the relativistic 4-dimensional space-time continuum. Thus,
for example, the position vector x = (x, y, z) in 3-dimensional space has a 4th component
in relativistic theory:

xλ = (x, y, z, ict) = (x, ict) (8.1)

while the vector potential A = (Ax, Ay, Az) in electromagnetic theory is the space compo-
nent of a 4-vector, whose 4th component is i multiplied by the electrostatic potential φ:

Aλ = (Ax, Ay, Az, iφ) = (A, iφ) (8.2)

Similarly, the current density vector j = (jx, jy, jz) is the space-component of a 4-vector

jλ = (jx, jy, jz, icρ) = (j, icρ) (8.3)
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whose time-component is ic multiplied by the charge density ρ. (Throughout this chapter
we will represent 3-vectors by writing them in bold-face letters. Thus jλ = (j, icρ) means
that the first three components of the 4-vector jλ are given by j = (jx, jy, jz), while the
4th component is icρ.) The gradient operator ∂ also becomes the space-component of a
4-vector in relativistic theory:

∂λ ≡
(

∂

∂x1

,
∂

∂x2

,
∂

∂x3

,
∂

∂x4

)
=

(
∂,− i

c

∂

∂t

)
(8.4)

while the Laplacian operator is replaced by the d’Alembertian operator:

� ≡
4∑

λ=1

∂2
λ ≡

4∑

λ=1

∂2

∂xλ
(8.5)

an operator which exhibits the required space-time symmetry, so that its form is the same
in all inertial frames. In relativistic electrodynamics, the electric field vector E and the
magnetic field vector H are components of an antisymmetric tensor Fλ′,λ, which is related
to Aλ by

Fλ′,λ ≡ ∂λ′Aλ − ∂λAλ′ =




0 Hz −Hy −iEx
−Hz 0 Hx −iEy
Hy −Hx 0 −iEz
iEx iEy iEz 0


 (8.6)

The 4-vector Aλ, which represents the electromagnetic potential, is related to the 4-vector
representing current density by

�Aλ = −4π

c
jλ (8.7)

When both the current density jλ and the electromagnetic potential 4-vector Aλ are
independent of time, equation (8.7) reduces to:

∇2
1Aλ(x1) = −4π

c
jλ(x1) (8.8)

which has the Green’s function solution

Aλ(x1) =
1

c

∫
d3x2

1

|x1 − x2|
jλ(x2) (8.9)

We can see that (8.9) is a solution to (8.8) because

∇2
1

1

|x1 − x2|
= −4πδ3(x1 − x2) ≡ −4πδ(x1 − x2)δ(y1 − y2)δ(z1 − z2) (8.10)
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and therefore

∇2
1Aλ(x1) =

1

c

∫
d3x2 ∇2

1

1

|x1 − x2|
jλ(x2)

= −4π

c

∫
d3x2 δ3(x1 − x2) jλ(x2)

= −4π

c
jλ(x1)

(8.11)

The subscript 1 on the Laplacian operator means that the operator is acting on the coor-
dinates of the field-point x1 rather than on the source-point, x2.

Because of charge conservation, the current density 4-vector obeys the condition

4∑

λ=1

∂λjλ = 0 (8.12)

Since the current density is related to the electromagnetic potential 4-vector through (8.7),
it is natural to work in the Lorentz gauge, where a similar condition is imposed on Aλ:

4∑

λ=1

∂λAλ = 0 (8.13)

Equations (8.7) and (8.13) are Maxwell’s equations in a vacuum, written in a form that
makes the space-time symmetry apparent.

8.2 The Dirac equation for an electron in an external

electromagnetic potential

P.A.M. Dirac’s relativistic wave equation for an electron moving in an external potential
Aλ can be written in the form:

[
4∑

λ=1

γλ

(
∂λ −

i

c
Aλ

)
+ c

]
χµ = 0 (8.14)

where atomic units are used and where the γλ’s are 4× 4 matrices:

γ1 =




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0


 γ2 =




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


 (8.15)
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γ3 =




0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0


 γ4 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 (8.16)

In atomic units, the electron rest-mass is equal to 1, and Planck’s constant divided by 2π
is also equal to 1, while the velocity of light has a value equal to the reciprocal of the fine
structure constant:

m0 = 1 ~ = 1 c = 137.036 (8.17)

From the definitions of the γλ’s, it follows that they anticommute:

γλ′γλ + γλγλ′ = 2Iδλ′,λ (8.18)

In equation (8.18), I is a 4×4 unit matrix. Solutions to the 1-electron Dirac equation are
4-component spinors.

8.3 Time-independent problems

In the special case where the external electromagnetic potential 4-vector Aλ is independent
of time, it is convenient to write the Dirac equation (8.14) in a different form, where we
introduce the notation

α = iγ0γ γ0 ≡ γ4 (8.19)

From equations (8.15), (8.16) and (8.19) it follows that the components of the 3-vector α
can be written in block form as

αj =

(
0 σj
σj 0

)
j = 1, 2, 3 (8.20)

where, in the off-diagonal blocks, σj, j = 1, 2, 3 are the 2×2 Pauli spin matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(8.21)

For time-independent problems, the Dirac equation for a single electron can then be written
in the form:

[H − εµ]χµ(x) = 0 (8.22)

where

H = −icα ·
(
∂ − i

c
A(x)

)
+ Iφ(x) + γ0c

2 (8.23)

is the Dirac Hamiltonian of an electron moving in a constant external electromagnetic
potential, εµ is the 1-electron energy, and χµ(x) is the 4-component time-independent
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spinor of the electron. The kinetic energy term in the Dirac Hamilton is given by

−icα · ∂ = −ic




0 0 ∂3 ∂−
0 0 ∂+ −∂3

∂3 ∂− 0 0
∂+ −∂3 0 0


 (8.24)

where

∂± ≡ ∂1 ± i∂2 (8.25)

Similarly, the part of the Dirac Hamiltonian involving potentials is

−α ·A + Iφ =




φ 0 −A3 −A−
0 φ −A+ A3

−A3 −A− φ 0
−A+ A3 0 φ


 (8.26)

where

A± ≡ A1 ± iA2 (8.27)

8.4 The Dirac equation for an electron in the field of

a nucleus

When A(x) = 0, and φ(x) = −Z/r, equation (8.22) reduces to

[
−icα · ∂ − Z

r
+ γ0c

2 − εµ
]
χµ(x) = 0 (8.28)

which is the Dirac equation for an electron moving in the attractive electrostatic potential
of a nucleus with charge Z. Equation (8.28) can be solved exactly, and the solutions have
the form

χµ(x) = χnjlM(x) =




ignjl(r)Ωj,l,M(θ, ϕ)

−fnjl(r)Ωj,2j−l,M(θ, ϕ)


 (8.29)

Examples are shown in equations (??) and (??). In equation (8.29), the angular function
Ωj,l,M(θ, ϕ) is a two-component “spherical spinor”, which is an eigenfunction of orbital an-
gular momentum corresponding to the quantum number l, total angular momentum (or-
bital plus spin) with quantum number j, and the z-component of total angular momentum,
with quantum number M . The spherical spinors are built up from spherical harmonics and
2-component spinors by combining them with the appropriate Clebsch-Gordan coefficients
in such a way as to produce eigenfunctions of total angular momentum. The Clebsch-
Gordan coefficients that enter are different, depending on whether j = l + 1

2
or j = l − 1

2
.
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When j = l + 1
2
,

Ωj,l,M(θ, ϕ) =




√
l +M + 1

2

2l + 1
Yl,M− 1

2
(θ, ϕ)

√
l −M + 1

2

2l + 1
Yl,M+ 1

2
(θ, ϕ)




(8.30)

while when j = l − 1
2
,

Ωj,l,M(θ, ϕ) =




−

√
l −M + 1

2

2l + 1
Yl,M− 1

2
(θ, ϕ)

√
l +M + 1

2

2l + 1
Yl,M+ 1

2
(θ, ϕ)




(8.31)

The radial function gnjl(r) is much larger than fnjl(r). The large and small radial functions
are defined respectively by

gnjl(r) = N rγ−1e−Zr/n̄ (W1(r)−W2(r)) (8.32)

and

fnjl(r) = N
√
c2 − εnj
c2 + εnj

rγ−1e−Zr/n̄ (W1(r) +W2(r)) (8.33)

where

W1(r) ≡ nrF

(
j +

1

2
− n+ 1

∣∣∣∣2γ + 1

∣∣∣∣
2Zr

n̄

)

W2(r) ≡ (n̄− κ)F

(
j +

1

2
− n

∣∣∣∣2γ + 1

∣∣∣∣
2Zr

n̄

)

(8.34)

with

κ ≡




−(j + 1

2
) j = l + 1

2

j + 1
2

j = l − 1
2

(8.35)

γ ≡
√(

j +
1

2

)2

−
(
Z

c

)2

(8.36)
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nr ≡ n− j − 1

2
(8.37)

and

n̄ ≡
√
n2 − 2nr(j +

1

2
− γ) (8.38)

Just as in the definition of the non-relativistic hydrogenlike orbitals, F (a|b|ζ) is a confluent
hypergeometric function:

F (a|b|ζ) ≡ 1 +
a

b
ζ +

a(a+ 1)

b(b+ 1)2!
ζ2 + · · · (8.39)

When Z � 137, the 1-electron energies

εnj =
c2

√
1 +

(
Z

c(γ+nr)

)2
(8.40)
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Chapter 9

INTERACTION BETWEEN
MATTER AND RADIATION

9.1 Lagrangian densities for fields

Let us now turn our attention to the problem of how to treat continuous systems, or fields,
using the Lagrangian formalism. We shall begin by considering a 3-dimensional space, with
coordinates x, y and z, and later we will generalize to spaces of higher dimension and also to
spaces where the metric is non-Euclidean. We have just been discussing normal modes for
small vibrations of a classical system of particles about the equilibrium positions. We might
also wish to discuss the normal modes of a violin string or a drumhead, or the harmonics
of sound waves inside a closed container. In these examples, the medium can be regarded
as continuous as long as we are considering low frequencies, but at high frequencies, where
the wavelength is comparable to the distance between the particles of which the system
is composed, this picture breaks down. But at low frequencies, the displacement from
equilibrium can be treated as a field.

There are other fields that one might wish to consider, such as electromagnetic fields.
What we now wish to discuss is the problem of how to start with a wave equation in classical
mechanics, and how to pass over to a quantum mechanical treatment of the system. In
order to do this, it is useful to introduce the concept of a Lagrangian density, L, This
is sometimes defined as the kinetic energy per unit volume of space, minus the density
of potential energy. However, in some cases, for example when the Lagrangian must be
invariant under a Lorentz transformation, this definition cannot be used, and we must
instead define the Lagrangian density as that which gives the correct wave equations. The
usual Lagrangian of the system is the Lagrangian density integrated over the whole volume
of the system.

L =

∫ ∫ ∫
L dx dy dz (9.1)

The variational principle from which the equations of motion can be derived can be written
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in the form ∫
δL dt =

∫ ∫ ∫ ∫
δL dx dy dz dt = 0 (9.2)

Suppose that the continuous system is described by a number of fields, φ1, φ2, · · · , φn,
which are continuous functions of the space and time coordinates x, y, z and t. For example,
φ1, φ2, · · · might represent the components of the electromagnetic field. Suppose also that
the Lagrangian density can be expressed in terms of the fields and their first derivatives
with respect to the space and time coordinates, so that

L = L
(
φj,

∂φj
∂xµ

) 



j = 1, 2, · · · , n
µ = 1, 2, 3, 4
x4 = ict

(9.3)

If we change one of the fields by a small amount, the resulting change in the Lagrangian
density is given by

δL =
∂L
∂φi

δφi +
4∑

µ=1

∂L
∂(∂φi/∂xµ)

∂(δφi)

∂xµ
(9.4)

The variational principle then becomes

∫
δL dt =

∫ ∫ ∫ ∫ [
∂L
∂φi

+
4∑

µ=1

∂L
∂(∂φi/∂xµ)

∂(δφi)

∂xµ

]
dx dy dz dt (9.5)

The second term on the right-hand side of (9.5) can be integrated by parts in a manner
analogous to equations (??)-(??). Thus, for example, we can write

∫ ∫ ∫ ∫
∂L

∂(∂φi/∂x)

∂(δφi)

∂x
dx dy dz dt

=

[∫ ∫ ∫
∂L

∂(∂φi/∂x)
δφi

]xb

xa

dy dz dt

−
∫ ∫ ∫ ∫

∂

∂x

∂L
∂(∂φi/∂x)

δφi dx dy dz dt (9.6)

The first term to the right of the = sign is required to vanish because the variation must
be zero at the end points. In this way, we can rewrite the variational principle (9.2) in the
form:

∫
δL dt =

∫ ∫ ∫ ∫ [
∂L
∂φi
−

4∑

µ=1

∂

∂xµ
∂L

∂(∂φi/∂xµ)

]
δφi dx dy dz dt = 0 (9.7)

Since the variation δφi is arbitrary, (9.7) can be fulfilled only if

∂L
∂φi
−

4∑

µ=1

∂

∂xµ
∂L

∂(∂φi/∂xµ)
= 0 (9.8)
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Thus if we are able to write down the Lagrangian density of a continuous system, the
the variational principle leads us to the equations of motion (9.8). Conversely, knowledge
of the equations of motion of a continuous system can be used to infer the Lagrangian
density from which they are derived. The canonical conjugate of the field φi is called the
momentum density, and is defined as

πi ≡
∂L

∂(∂φi/∂t)
(9.9)

and the Hamiltonian density H, corresponding to the Lagrangian density L, is given by

H =
n∑

i=1

πi
∂φi

∂t
− L (9.10)

Notice that equation (9.8) is invariant under a Lorenz transformation. but equation (9.10)
is not, since the time coordinate is singled out for special treatment. This corresponds
to the fact that energy, by itself, is not a Lorenz-invariant quantity, but only the 4th
component of a 4-vector. It is possible to perform approximately relativistic calculations
using the Hamiltonian formulation, but the Lagrangian formalism should be used rather
than the Hamiltonian in cases where Lorentz invariance is important. Having found the
equations of motion (9.8), we can next solve them, subject to the boundary conditions, and
find solutions corresponding to pure harmonic oscillations. The fields are then expressed
as sums of these harmonic modes. When the sums are substituted into the Lagrangian
L =

∫ ∫ ∫
L dx dy dz, then L can be recognized as a sum of simple harmonic oscillator

Lagrangians. The quantization of these can proceed in the standard way.

9.2 Electromagnetic potentials

Let us now attempt to apply these methods to the electromagnetic potential 4-vector, Aλ.
This is a case where the definition of the Lagrangian density as the density of kinetic energy
minus the density of potential energy cannot be used. We must instead use the concept of
the Lagrangian density as a quantity which leads, through the variational principle, to the
correct wave equations. In the case of the electromagnetic potentials, we know that they
obey the wave equation

�2Aλ = −4π

c
jλ jλ = 1, 2, 3, 4 (9.11)

where

�2 ≡
4∑

µ=1

∂2

∂xµ2
= ∇2 − 1

c2

∂2

∂t2
x4 = ict (9.12)

We must invent a Lagrangian density that leads to the wave equation (9.11). The way
to do this is to try all possibilities, starting with the simplest ones, always remembering
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that the forms must be Lorentz invariant. The Lagrangian density which actually leads to
equation (9.11) is

L = −1

2

4∑

λ=1

4∑

µ=1

(
∂Aλ
∂xµ

)2

+
4π

c

4∑

λ=1

Aλjλ (9.13)

From (9.8) we have:

∂L
∂Aλ

−
4∑

µ=1

∂

∂xµ
∂L

∂(∂Aλ/∂xµ)
= 0 (9.14)

With the trial Lagrangian density of equation (9.13), we have

∂L
∂Aλ

=
4π

c
jλ

−
4∑

µ=1

∂

∂xµ
∂L

∂(∂Aλ/∂xµ)
=

4∑

µ=1

∂

∂xµ
∂Aλ
∂xµ

= �2Aλ (9.15)

Substituting these results into the Euler-Lagrange equations (9.14) gives

4π

c
jλ + �2Aλ = 0 (9.16)

which is just the wave equation that we wanted to reproduce. The next step is to solve the
wave equation and find the harmonic normal modes of the system. However, we can see
that if we include the term involving the current density, the solutions will not necessarily
be harmonic. Therefore we omit the interaction term, hoping to include it later by means
of perturbation theory. This leaves us with the homogeneous wave equation:

�2Aλ = 0 (9.17)

which has harmonic solutions of the form

Ak,λ = N
{
ak,λ(t)e

ik·x + a∗k,λ(t)e
−ik·x} (9.18)

Here the values of k are restricted by periodic boundary conditions imposed at the faces
of a box of normalization of volume V . N is a constant which we will choose later in
a convenient way. ak,λ and its complex conjugate a∗k,λ are Fourier coefficients which are
harmonic functions of time. Substituting (9.18) into (9.17), we can see that Ak,λ will be a
solution, provided that

∂2ak,λ
∂t

+ ω2
kak,λ = 0

∂2a∗k,λ
∂t

+ ω2
ka
∗
k,λ = 0 (9.19)



9.2. ELECTROMAGNETIC POTENTIALS 167

where ωk = |k|/c. Having found harmonic solutions to the wave equation, we must ex-
pand the potentials in terms of these, and substitute them back into the Lagrangian. We
then hope to be able to recognize the Lagrangian as a sum of simple harmonic oscillator
Lagrangians. Thus, expanding the potentials in terms of their normal modes, we write

Aλ(x, t) = N
′∑

k

(
ak,λe

ik·x + a∗k,λe
−ik·x) (9.20)

In (9.20), the sum runs over only half of k-space for the following reason: By writing the
harmonic solutions in the form (9.18), (i.e as a function plus its complex conjugate), we
ensure that they shall be real. However, we do not want the solution corresponding to
positive k to repeat that corresponding to −k. Therefore we restrict the sum to half of
k-space, and we denote this with a prime on the summation. From (9.20), we have

∂Aλ
∂xµ

= N
′∑

k

(
ikµak,λe

ik·x − ikµa∗k,λe−ik·x
)

µ = 1, 2, 3 (9.21)

and

∂Aλ
∂x4

=
N
ic

′∑

k

(
∂ak,λ
∂t

eik·x +
∂a∗k,λ
∂t

e−ik·x
)

(9.22)

Let us now calculate the Hamiltonian density H associated with the electromagnetic po-
tentials. According to our earlier discussion, the Hamiltonian density is given by

H =
4∑

λ=1

∂Aλ
∂t

{
∂L

∂(∂Aλ/∂t)

}
− L

=
1

2

4∑

λ=1

[
3∑

µ=1

(
∂Aλ
∂xµ

)2

−
(
∂Aλ
∂x4

)2
]′
− 4π

c

4∑

λ=1

jλAλ

= Hradiation +Hinteraction ≡ Hr +Hi (9.23)

Now we know that the Fourier coefficients ak,λ depend harmonically on time, so that

∂ak,λ
∂t

= ±ikcak,λ
∂a∗k,λ
∂t

= ∓ikca∗k,λ (9.24)

Also we know that the box-normalized functions eik·x/
√
V obey the orthonormality rela-

tions

1

V

∫
d3x ei(k−k

′)·x = δk,k′ (9.25)
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Substituting (9.25) and (9.24) into (9.23), we obtain the Hamiltonian for the free electro-
magnetic field in the form

Hr =

∫
d3x Hr = V

′∑

k

4∑

λ=1

N 2
(
ak,λa

∗
k,λ + a∗k,λak,λ

)
(9.26)

Notice that the terms proportional to ak,λak,λ and a∗k,λa
∗
k,λ do not occur in Hr because the

sum over k is restricted to one half of k-space. With the substitutions

ak,λ =
1√
2kc

(−ipk,λ + kcqk,λ)

a∗k,λ =
1√
2kc

(ipk,λ + kcqk,λ) (9.27)

Hr becomes

Hr =
V

c

′∑

k

4∑

λ=1

N 2k
(
p2
k,λ + k2c2q2

k,λ

)
(9.28)

This can be identified as the Hamiltonian of a collection of harmonic oscillators, provided
that

N =

√
c

2kV
(9.29)

If we make the identification a∗k,λ → a†k,λ, and choose the value of N given by (9.29), then
Hr takes on the form

Hr =
1

2

′∑

k

4∑

λ=1

kc
(
ak,λa

†
k,λ + a†k,λak,λ

)
(9.30)

This can be recognized as the Hamiltonian of a collection of harmonic oscillators with
frequencies ωk = kc. In the quantum treatment of such a system, a†k,λ and ak,λ correspond
to creation and annihilation operators, and they obey the commutation relations

[
ak,λ, a

†
k,λ

]
= δk,k′δλ,λ′

[
a†k,λ, a

†
k,λ

]
= 0

[ak,λ, ak,λ] = 0 (9.31)

(See equations (??)-(??)). Expanding the potentials in terms of the normal modes of the
system, we have

Aλ =

√
c

2kV

′∑

k

(
ak,λe

ik·x + a†k,λe
−ik·x

)
(9.32)
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The interaction Hamiltonian, expressed in terms of the photon creation and annihilation
operators, then becomes:

Hi = −4π

c

4∑

λ=1

∫
d3x Aλ jλ

= −
′∑

k

4∑

λ=1

4π√
2ωkV

[
ak,λ

∫
d3x eik·xjλ + a†k,λ

∫
d3x e−ik·xjλ

]
(9.33)

The potential Aλ is a 4-vector

Aλ = {A, iϕ} (9.34)

of which the first three (spacelike) components are the vector potential, which is related
to the magnetic field, while the last (timelike) component is the scalar or electrostatic
potential. The current density jλ is also a 4-vector:

jλ = {j, iρ} (9.35)

is also a 4-vector. Its first three components form the current density vector in 3-dimensional
space, while the 4th component represents the charge density. For an electron in the state
ψ satisfying the Dirac equation, its contribution to the current density is given by

j = ecψ∗αψ (9.36)

where the three components of the vector α are the Dirac matrices representing the velocity
operator:

α1 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 (9.37)

α2 =




0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0


 (9.38)

α3 =




0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


 (9.39)

In the non-relativistic limit, this reduces approximately to

jN.R. →
e

me

ψ∗pψ (9.40)

For an electron in the state ψ, its contribution to the charge density ρ is given by

ρ = eψ∗ψ (9.41)
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9.3 Separation of the longitudinal and transverse po-

tentials

The approximate Hamiltonian of the electron-photon system

The sum of the Hamiltonian that represents the radiation field by itself and the Hamiltonian
representing the interaction between matter and radiation can be written in the form:

Hr +Hi =
4∑

λ=1

Hλ (9.42)

where

Hλ =

∫
d3x

[
1

8π

{
3∑

µ=1

(
∂Aλ
∂xµ

)2

−
(
∂A4

∂x4

)2
}
− 1

c
jλAλ

]
(9.43)

Thus the Hamiltonian can be split up into four parts, each of which depends on only one of
the potentials. This means that the potentials would be independent of each other, except
that the components of the 4-current jλ are not independent, but obey a conservation law.
For most physical and chemical applications, it is convenient to treat the vector potential
A in the way that we have outlined above, but to treat the scalar potential ϕ in a different
way. The classical wave equation for the scalar potential is

�2A4 =
4π

c
j4 (9.44)

or
(
∇2 − 1

c2

∂2

∂t2

)
ϕ = −4πρ = −4πeψ∗ψ (9.45)

If we are in the near neighborhood of a charge distribution, the time-dependence of ϕ can
usually be neglected in comparison with ∇2ϕ, and we have the approximate relationship

∇2ϕ = −4πρ (9.46)

which has the solution

ϕ(x) =

∫
d3x′

ρ(x′)

|x− x′| (9.47)

We now introduce an approximation which is useful for practical calculations in atomic or
molecular physics. We divide the charged particles in the universe into two parts: (1) the
small system that we intend to study, and (2) all the rest. We assume that in some approx-
imation, the vector potential in our small system can be neglected in comparison with the
scalar potential. Conversely, we assume that for the interaction of our small system with
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the distant remainder of the universe, the scalar potential ϕ can be neglected in compari-
son with the vector potential A. In this approximation, the Hamiltonian representing the
interaction of the particles in our small system with other charges, both inside and outside
it, is

Hi = −1

c

∫
d3x j ·A +

∫
d3x ρϕ (9.48)

where j, ρ and ϕ belong to the small system that we are studying, while the vector potential
A belongs to the universe outside. We can write the approximate interaction Hamiltonian
Hi in the form

Hi = −
∑

k

3∑

λ=1

√
2πhc

V k

[
ak,λ

∫
d3x eik·xψ∗αλψ + a†k,λ

∫
d3x e−ik·xψ∗αλψ

]

+ e2

∫
d3x

∫
d3x′

ψ∗(x)ψ(x)ψ∗(x′)ψ(x′)

|x− x′| (9.49)

9.4 Linear polarization

The equations

�2Aλ = −4π

c
jλ λ = 1, 2, 3, 4 (9.50)

are equivalent to Maxwell’s equations for free space, provided that we impose the subsidiary
condition

4∑

λ=1

∂Aλ
∂xλ

= 0 x4 ≡ ict (9.51)

This is called the “Lorenz condition”, and it defines the “gauge” in which we will be
working. The Lorenz condition is a natural one to impose, since the potentials Aλ arise
from 4-currents which obey the conservation law:

4∑

λ=1

∂jλ
∂xλ

= 0 (9.52)

When A4 = 0, the Lorenz condition reduces to

∇ ·A = 0 (9.53)

which requires the divergence of the vector potential to vanish. Let us consider a case
where A4 = 0, and where A represents a plane wave propagating through space with wave
number k. Then we can write A in the form

A = A0Re
{
u ei(k·x−kct)

}
(9.54)
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where A0 is a constant and u is a unit vector in the direction of A. Then the Lorenz
condition requires that

∇ ·A = A0Re
{
k · u ei(k·x−kct)

}
= 0 (9.55)

which will be satisfied for all values of x if

k · u = 0 (9.56)

In other words, the unit vector u must be perpendicular to the direction of propagation
of the wave. The plane monochromatic wave described by these equations is said to be
linearly polarized, with polarization vector u. For a fixed value of k, there are two linearly
independent polarization vectors, u1 and u2, which are perpendicular to each other, and
also perpendicular to k. For example. if the z-axis is chosen to be in the direction of k,
then u1 and u2 can be chosen to be in the directions of the x-axis and y-axis respectively.

9.5 Spontaneous photon emission

Using the electron creation and annihilation operator notation introduced in Section 5.9
of this book, we can write the Hamiltonians of the electrons in the small system that we
are studying and the Hamiltonian of the radiation field by itself in the form

H0 = Hr +He

=
1

2

∑

k,λ

hck

(
a†k,λak,λ +

1

2

)
+
∑

r,s

Hc
r,sb
†
rbs +

1

2

∑

r,s,t,u

gr,s|t,ub
†
rb
†
sbtbu (9.57)

We can also introduce a number of states which are eigenfunctions of H0:

H0|A〉 = EA|A〉
H0|B〉 = EB|B〉
H0|C〉 = EC |C〉

...
...

... (9.58)

We would like to calculate the probability per unit time that the interaction Hamiltonian
will induce a transition between two of these eigenstates, |A〉 and |B〉, accompanied by the
spontaneous emission of a photon. To do so, we start by representing |B〉 in the form:

|B〉 =
1√

nk,λ + 1
b†fbia

†
k,λ|A〉 (9.59)

In other words, |B〉 differs from |A〉 by having an extra photon in the mode k, λ. and by
the transition χi → χf . We can check that |B〉 is properly normalized by calculating its
scalar product with its adjunct state

〈B| =
1√

nk,λ + 1
〈A|ak.λb†ibf (9.60)
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Making use of the relations

ak,λa
†
k,λ|A〉 = (1 + a†k,λak,λ)|A〉 = (1 + nk,λ)|A〉 (9.61)

and

b†ibi|A〉 = νi|A〉 = |A〉
bfb
†
f |A〉 = (1− νf )|A〉 = |A〉 (9.62)

(where νi and νf are occupation numbers. equal to 1 or 0 depending on whether the
spin-orbital is occupied or unoccupied) we obtain

〈B|B〉 =
1 + nk,λ

(
√

1 + nk,λ)2
= 1 (9.63)

so that |B〉 is properly normalized. Here nk,λ is the number of photons in the mode k.λ in
the initial state |A〉, and since we are treating spontaneous photon emission, this number
is zero. Letting

Mr,s(k, λ) ≡ −e
√

2π~c
V k

∫
d3x eik·xχ∗r(x)αλχs(x) (9.64)

the transition matrix element of the interaction Hamiltonian then becomes:

〈A|Hi|B〉 =
∑

r,s

∑

k′,λ′

〈A|b†rbs
{
ak′,λ′Mr,s(k

′, λ′) + a†k′,λ′M
†
r,s(k

′, λ′)
}
b†fbia

†
k,λ|A〉

=
∑

r,s

〈A|b†rbsb†fbi|A〉Mr,s(k, λ)

= Mi,f (k, λ) (9.65)

For a full derivation of the rate of spontaneous photon emission, see [Avery, 1976]. For
cases where the transition from the excited state to the ground state is dipole-allowed, i.e.
when

∫
d3x χ∗i (x) x χf (x) 6= 0 (9.66)

one finds excited state lifetimes of the order of 10−8 seconds, the decay of the excited state
being due to spontaneous photon emission.

9.6 Photon absorption

Suppose that the initial state |A〉 of the electron-photon system contains nk,λ photons in
the mode kλ, so that

a†k,λak,λ|A〉 = nk,λ|A〉 (9.67)



174 QUANTUM THEORY

Now let us consider a transition from this state to the state

|B〉 =
1

√
nk,λ

b†fbiak,λ|A〉 (9.68)

which differs from |A〉 by having one fewer photon in the mode kλ, and by the transition
i→ f . The factor 1/

√
nk,λ is needed to make |B〉 properly normalized. The matrix element

of the interaction Hamiltonian between the two states is given by

〈A|Hi|B〉 =
1

√
nk,λ

〈A|Hi|b†fbiak,λ|A〉

=
1

√
nk,λ

〈A|
∑

r,s

b†rbs
∑

k′,λ′

{
ak′λ′Mr,s(k

′, λ′) + a†k′,λ′M
†
r,s(k

′, λ′)
}
b†fbiak,λ|A〉

=
1

√
nk,λ

〈A|a†k,λak,λ|A〉M †
i,f (k, λ)

=
√
nk,λ M

†
i,f (k, λ) (9.69)

where

M †
r,s(k, λ) ≡ −e

√
2π~c
V k

∫
d3x e−ik·xχ∗r(x)αλχs(x) (9.70)

Using Fermi’s “Golden Rule Number Two” from perturbation theory, we obtain the prob-
ability per unit time for the transition |A〉 → |B〉:

1

τ
=

2π

~
nk,λ|M †

i,f (k, λ)|2ρ(B) (9.71)

where ρ(B) is the density of final states. The number of photons in the mode kλ is nk,λ/V ,
where V is the volume of normalization. Therefore, since the photons move with velocity
c, the flux of photons in this mode is nk,λc/V . The criss-section σ for the absorption of a
photon is defined the be the probability per unit time for absorption, divided by the flux.
Therefore, in the non-relativistic limit, we obtain the cross-section

σ = (2π)2

(
e2

~c

)(
~
mec

)2 ~c
k

∣∣∣∣
∫
dτ e−ik·xχ∗i

(
u · ∂

∂x

)
χf

∣∣∣∣
2

ρ(B) (9.72)

Here σ represents the cross-section for the absorption of a photon with wave number k
and polarization vector u, accompanied by the 1-electron transition i→ f . Similarly, the
cross.section for absorption of a left- or right-circularly polarized photon is given by

σ± = (2π)2

(
e2

~c

)(
~
mec

)2 ~c
2k

∣∣∣∣
∫
dτ e−ik·xχ∗i

(
(u1 ± iu2) · ∂

∂x

)
χf

∣∣∣∣
2

ρ(B)

(9.73)

If χf corresponds to a bound state with a finite lifetime Γ, the density of final states can
be represented by the function

ρ(B) =
~Γ

π {(EA − EB)2 + (~Γ)2} (9.74)
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Figure 9.1: In this figure, the density of final states ρ(B) is plotted as a function
of ~Γ on a scale where |EA − EB| = 1.

9.7 Problems with field theories

Quantum electrodynamics was pioneered very largely by the great British physicist P.A.M.
Dirac, and yet Dirac was dissatisfied with the theory as it stood because of logical inconsis-
tencies which had to be overcome by “renormalization”, a procedure that Dirac regarded as
a “stop-gap measure”. There is a remarkable contrast between the enormous calculational
success of quantum electrodynamics, and the logical inconsistencies that worried Dirac.

One serious problem with quantum field theories is the infinite self-energies that they
predict. Another difficulty is connected with Haag’s theorem. In an article entitled “Haag’s
Theorem as a Reason to Reconsider Direct-Action Theories”[Kastner, 2015a], R.E. Kastner
writes: “Haag showed that the interacting field demands an inequivalent representation
from that of the free field; the vacuum states of the two fields cannot be defined in the
same representation. This result presents a serious problem for the basic mathematical
consistency of quantum field theories, and has led to much discussion... Haag presented a
more general and formal result in which the infinite degrees of freedom of the quantized
field can be seen as the actual source of the problem.[203]”.

In their famous 1949 paper, J.A. Wheeler and R.P. Feynman say “...action at a distance
must have a close connection with field theory. But never does it consider the action
of a charge on itself. The theory of direct interparticle action is equivalent, not to the
usual field theory, but to a modified or adjunct field theory..” In this adjunct field theory,
which incorporates the concept of direct interparticle interaction , the logical difficulties
of the usual theory are removed, for example the difficulties connected with giving the
electromagnetic field an infinite number of degrees of freedom, but the calculational power
of the usual theory is retained.
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Figure 9.2: Paul Adrien Maurice Dirac (1902-1984). Although he was the prin-
cipal founder of quantum electrodynamics, he was dissatisfied with the theory
as it stood. Dirac once said that renormalization is just a stop gap procedure,
and there had to occur a fundamental change in our ideas.
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Figure 9.3: Rudolf Haag (1922-2016). He was the author of a theorem criticizing
all field theories. In one form of Haag’s theorem, the root of the problem is
seen to be the fact that field theories lead to an infinite number of degrees
of freedom. Haag was awarded the Max Planck medal in 1970 and the Henri
Poincaré Prize of the International Association of Mathematical Physics in
1997.
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Chapter 10

RESONANCE ENERGY
TRANSFER

10.1 Introduction

The phenomenon of resonance energy transfer or “sensitized fluorescence” was discovered
in 1922 by G. Cario and J. Franck [Cario and Franck, 1923]. They exposed a mixture
of mercury and thallium vapors to a frequency of light which could only be absorbed by
the mercury, and observed in the fluorescence a frequency which only the thallium could
emit. An initial theoretical explanation of this phenomenon on the basis of classical cou-
pled oscillator theory was put forward by J. Perrin in 1926. Later F. Perrin, Kallman and
London, developed quantum mechanical theories to explain sensitized fluorescence. These
theories were improved by Th. Förster [Scholes, 2003]. Much experimental work has also
been done in this field, and interest is high today because resonance energy transfer has
proved to be a very useful tool in nonoscience [Chou and Dennis, 2015], [Wegner, 2015],
[Kusku and Akan, 2011] and biophysics [Avery, Bay and Szent-Györgyi, 1961] [Pearlstein, 2002].

In the present chapter, we extend the early theories by considering relativistic effects.
We replace the Coulomb interaction by a relativistic interaction, as was done in early pa-
pers by one of us [Avery, 1966], [Avery, 1984]. Similar results were obtained by Gomberoff
and Power [Gomberoff and Power, 1966]. More recently, very important theoretical work
applying relativistic theory to resonance energy transfer was carried out by D.L. An-
drews and his co.workers [Andrews and Demidov, 1999] [Juzeliunas and Andrews, 2000]
[Anderson, 2008] [Daniels et al., 2003] [Bradshaw and Andrews, 2008].

The theory presented here is a quantum mechanical direct-interaction theory. In other
words it does not involve photons, and thus it avoids problems such as the infinities asso-
ciated self-interaction energies, and the consequences of Haag’s theorem that appear when
photons are regarded as an infinite assembly of harmonic oscillators. In 1949, J.A. Wheeler
and R.P. Feynman published a famous paper [Wheeler and Feynman, 1949], in which they
showed that the classical behavior of a system of charged particles can be correctly ex-
plained by a direct interparticle interaction principle. They were motivated by the desire
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to avoid worrying infinities and other problems in the usual formulation of quantum electro-
dynamics, [Kastner, 2015a], [Kastmer, 2015b], [Grundler, pdf], [Lazarovici, prepring, pdf],
[Klaczynski, 2015]. The Wheeler-Feynman action principle is time-symmetric. In other
words, it makes use of both retarded and advanced potentials in a symmetrical way.

10.2 Review of the Perrin-Förster theory

In the Perrin-Förster theory of resonance energy transfer (also called sensitized fluores-
cence), one considers two atoms or molecules, located respectively at the points a1 and a2

so that they are separated by the distance R ≡ a1 − a2. This distance is assumed to be
large enough so that overlap between the electronic wave functions of the two systems can
be neglected. If it were not for the perturbation due to the interaction of the electrons of
the first system with those of the second, the product of the electronic wave functions of
the two systems, ψr(1)ψs(2), would be a stationary state, i.e. an eigenfunction of the total
Hamiltonian. However. there is a perturbation term due to the Coulomb interaction of
the electrons on one system with those on the other, and this perturbation can induce a
transition to another state, which we can denote by ψt(1)ψu(2). The perturbation matrix
element is given by:

H′rs|tu =

∫
dτ1

∫
dτ2 ψ

†
r(1)ψ†s(2)

∑

i,j

e2

|xi − xj|
ψt(1)ψu(2) (10.1)

Here xi indicates the position of electron i on system 1, while xj is the position of electron
j in system 2. Expanding 1/|xi − xj| in a six-fold Taylor series about the centers of the
two systems, a1 and a2, one obtains for the first non-zero term the interaction between the
transition dipole moments of the two systems.

H′rs|tu ≈ e2

[
dr,t1 · ds,u2

R3
− 3(dr,t1 ·R)(ds,u2 ·R)

R5

]
(10.2)

where

dr,t1 ≡
∫
dτ1ψ

†
r(1)r1ψt(1)

ds,u2 ≡
∫
dτ2ψ

†
s(2)r2ψu(2) (10.3)

and

r1 ≡ xi − a1

r2 ≡ xj − a2 (10.4)

From equation (10.2), one can see that the perturbation inducing the transition is propor-
tional to 1/R3. When first-order perturbation theory is used to calculate the transition
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probability, the perturbation matrix element is squared, and it is thus proportional to
1/R6. In Förster’s version of the theory, a distance R0 is defined to be the distance at
which the probability for resonance transfer of electronic excitation energy between two
systems is the same as the probability, 1/τ , of spontaneous photon emission by the initially
excited system. Thus, Förster wrote:

1

τs→a
=

1

τ

(
R0

R

)6

(10.5)

Typical values of R0 are of the order of magnitude 50 Ångströms.

10.3 A relativistic interaction

It is interesting to try to extend the Perrin-Förster theory by replacing the Coulomb interac-
tion by its relativistic counterpart.[Avery, 1966], [Avery, 1984], [Andrews and Demidov, 1999].
We start by recalling the definition of the contravatiant anticommuting Dirac matrices:

γ0 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 (10.6)

γ1 =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


 (10.7)

γ2 =




0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0


 (10.8)

γ3 =




0 0 1 0
0 0 0 0− 1
−1 0 0 0
0 1 0 0


 (10.9)

We next introduce the second-order electron-electron S-matrix[204] defined by

Srs|tu ≡
3∑

µ=0

e2

∫
d4x1

∫
d4x2 ψ̄r(1)γµ(1)ψs(1)G(1, 2)ψ̄t(2)γµ(2)ψu(2) (10.10)

where d4x = d3xdt and ψ̄ ≡ ψ†γ0, and where G(1,2) is the Green’s function for the
d’Alembertian operator:

G(1, 2) ≡ 1

4π3

∫
d4k

eik·(x1−x2)−iω(t1−t2)

k · k− (ω/c)2 − iε (10.11)
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and d4k = d3kdω. We now let

ecψ̄r(1)γµ(1)ψt(1) ≡ jr,tµ (x1)ei(ωr−ωt)t1

ecψ̄s(2)γµ(2)ψu(1) ≡ js,uµ (x2)ei(ωs−ωu)t2 (10.12)

Then [204]

Srs|tu

=
3∑

µ=0

∫
d3x1dt1

∫
d3x2dt2 j

r,t
µ (x1)ei(ωr−ωt)t1G(1, 2)js,uµ (x2)ei(ωs−ωu)t2

= −2πδ(ωr − ωt + ωs − ωu)Urs|tu (10.13)

where[204]

Urs|tu = − 1

c2

3∑

µ=0

∫
d3x1

∫
d3x2 j

rt
µ (x1)

eik|x1−x2|

|x1 − x2|
jsuµ (x2)

≡ − 1

c2

3∑

µ=0

∫
d3x1

∫
d3x2 j

rt
µ (x1)G(1, 2)jsuµ (x2) (10.14)

and

k ≡ ωrt
c

(10.15)

10.4 The Green’s function of the Helmholtz equation

The function

G(1, 2) ≡ 1

2

[
eik|x1−x2|

|x1 − x2|
+
e−ik|x1−x2|

|x1 − x2|

]
(10.16)

is the Green’s function of the Helmholtz equation and it obeys the relationships

[∇2
1 + k2]G(1, 2) = [∇2

2 + k2]G(1, 2) = 4πδ(x1 − x2) (10.17)

The significance of this function is as follows: Suppose that the current 4-vector and the
electromagnetic potential 4-vector are simple harmonic functions of time:

jµ(x, ict) = jµ(x)eikct µ = 1, 2, 3, 4

Aµ(x, ict) = Aµ(x)eikct (10.18)

In that case, the wave equation relating the potentials to the source current becomes

[
∇2 + k2

]
Aµ(x, ict) =

1

4π
jµ(x, ict) µ = 1, 2, 3, 4 (10.19)

Making use of the 3-dimensional symmetric form of Green’s theorem and equation (10.17),
we have

Aµ(1) =

∫
d3x2 G(1, 2)jµ(2) (10.20)
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10.5 Matrix elements

We wish to evaluate matrix elements of the form
∫
d3x1ψ̄r(1)γµ(1)ψt(1) =

∫
d3x1ψ

†
r(1)γ0(1)γµ(1)ψt(1) (10.21)

where

γ0γ0 = I

γ0γ1 = α1

γ0γ2 = α2

γ0γ3 = α3 (10.22)

where

I =




1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1


 (10.23)

is the identity matrix, and where the components of the 3-vector α are given by

α1 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 (10.24)

α2 =




0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0


 (10.25)

α3 =




0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


 (10.26)

The matrix elements of the Dirac operator α can be related to the transition dipole mo-
ments by the commutation relation:

[Hj,dj] =
~c
i
α(j) j = 1, 2 (10.27)

where Hj is the Dirac Hamiltonian operator of the jth electron.

Hj = α(j) ·
(
~c
i

∂

∂xj
− eA(xj)

)
− eφ(xj) + βjmc

2 (10.28)
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Then
∫
d3x1 ψ

†
r(1) α(1) ψt(1) =

∫
dτ1 ψ

†
r(1) (H1r1 − r1H1)ψt(1)

=
i(Er − Et)

~c

∫
dτ1 ψ

†
r(1) r1 ψt(1)

= i(ωr − ωt)dr,t1 (10.29)

with a similar expression for j = 2. Finally, with the help of equation (E.43), we can obtain
the relations:

∫
dτ1 ψ

†
r(1) α(1) ψt(1) = ikdr,t1

∫
dτ2 ψ

†
s(2) α(2) ψu(2) = −ikds,u2 (10.30)

where

k ≡ Er − Et
~c

≈ Es − Eu
~c

(10.31)

The sign difference between the first and second parts of equation (10.30) comes from the
fact that one system is losing excitation energy, while the other is gaining it.

10.6 Transition probability at macroscopic separations

When the sensitizer and the acceptor are separated by a macroscopic distance, the non-
relativistic probability of resonance energy transfer between them becomes vanishingly
small. However, in a relativistic calculation, the terms involving α lead to a transition
probability which falls off only as 1/R2. At macroscopic sensitizer-acceptor separations,
we can make the approximation

x1 − x2 ≈ a1 − a2 ≡ R (10.32)

so that the Green’s function of the Helmholtz equation becomes

G(1, 2) ≈ 1

2

(eikR + e−ikR)

R
≡ cos(kR)

R
(10.33)

Then equation (10.14) becomes

Urs|tu = − 1

c2

cos(kR)

R

3∑

µ=0

(∫
d3x1 j

rt
µ (x1)

)(∫
d3x2 j

su
µ (x2)

)
(10.34)
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From equations (10.12) and (10.22), we have
∫
d3x1 j

rt
0 (x1) = ec

∫
d3x1 ψ

†
r(x1)I(1)ψt(x1) = 0

∫
d3x1 j

rt
1 (x1) = ec

∫
d3x1 ψ

†
r(x1)α1(1)ψt(x1)

∫
d3x1 j

rt
2 (x1) = ec

∫
d3x1 ψ

†
r(x1)α2(1)ψt(x1)

∫
d3x1 j

rt
3 (x1) = ec

∫
d3x1 ψ

†
r(x1)α3(1)ψt(x1) (10.35)

With the help of equation (10.30) we then have
∫
d3x1 j

r,t
µ (x1) = ec

∫
d3x1 ψ

†
r(x1)αµ(1)ψt(x1)

= ikec dr,t1,µ µ = 1, 2, 3 (10.36)

The expressions for js,uµ (x2) are similar. Thus, at macroscopic sensitizer-acceptor separa-
tions, we have

Urs|tu = − 1

c2

cos(kR)

R

3∑

µ=0

(∫
d3x1 j

rt
µ (x1)

)(∫
d3x2 j

su
µ (x2)

)

≈ −e2k2 dr,t1 · ds,u2

cos(kR)

R
(10.37)

Then

|Urs|tu|2 ≈
(e2k2 dr,t1 · ds,u2 cos(kR))2

R2
(10.38)

falls off only as 1/R2. Now suppose that the sensitizer is at the center of a large sphere
of radius R, on the surface of which acceptors are uniformly distributed. Then the prob-
ability of resonance energy transfer from the electronicly excited sensitizer to one or an-
other of the acceptors will be independent of the radius of the sphere. This shows that
the sensitizer can lose its excitation energy to acceptors over macroscopic distances. A
much more detailed calculation leading to the prediction of resonance energy transfer
over macroscopic distances has been carried through by G. Juzeliunas and D.L. Andrews
[Andrews and Demidov, 1999].

10.7 Comparison with spontaneous photon emission

Is long-range resonance energy transfer a process that competes with spontaneous photon
emission? Or is it another way of describing the same process? In the usual theory of
spontaneous photon emission, the presence of acceptors is not needed. The spontaneous
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photon emission would take place even if the remainder of space were entirely empty. At
the end of this article, we propose an experimental test. The presence of acceptors may also
be involved in the recently observed violation of Planck’s law ([Thompsen et. al., 2018]).
We are working on a longer paper which will explore these questions.

10.8 The Perrin-Förster region

We have, until now, been discussing the relativistic calculation of resonance energy transfer
probabilities at very large sensitizer-acceptor separations, where xi−xj ≈ R and kR� 1.
Let us now turn to the region of Förster’s R0, where we have kR� 1 and k|xi − xj| � 1.
We must ask whether the relativistic calculation in the short-range limit gives us the
Perrin-Förster’s result, which has been confirmed by so many experiments. In this region,

∑

i,j

e2(1−α(i) ·α(j))eik|xi−xj |

|xi − xj|
→
∑

i,j

e2(1−α(i) ·α(j))

|xi − xj|

=
∑

i,j

e2

|xi − xj|
−
∑

i,j

e2α(i) ·α(j)

|xi − xj|
(10.39)

The first term in the last line of equation (E.46) is that which gives rise to the Perrin-
Förster results. Our task now is to find matrix elements of the perturbation Hamiltonian
due to the second term, and to show that when kR � 1, the contribution of this term is
small compared to the contribution of the first term. Let

H′′1,2 ≡ −e2

∫
dτ1

∫
dτ2 ψ

†
r(1)ψ†s(2)

(α(1) ·α(2))

|xi − xj|
ψt(1)ψu(2) (10.40)

Making use of equation (E.41), we obtain for the leading non-zero term in the Taylor series
expansion of H′′1,2 in terms of 1/|xi − xj|:

H′′1,2 ≈ −e
2(ikdr,t1 ) · (−ikds,u2 )

R
+ ...

= −e2k2 (dr,t1 ) · (ds,u2 )

R
+ ... (10.41)

The ratio between this term and the leading Perrin-Förster term in equation (10.2) is

H′′1,2
H′1,2

≈
(
−e2k2 dr,t1 · ds,u2

R

)
/

(
e2 dr,t1 · ds,u2

R3

)

=

(
−k2R

3

R

)
= −k2R2 (10.42)

so that when kR� 1, the term H′′1,2 can be neglected in comparison with the Perrin-Förster
term. Thus, in this region, the relativistic treatment closely approximates the well-verified
non-relativistic Perrin-Förster result shown in equations (10.2) and (10.5).
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10.9 A proposed experiment

Figure 10.1: We propose the experiment illustrated in this figure for detecting
resonance energy transfer over macroscopic distances. The central rectangle
represents a glass slide, whose thickness (for example 0.2 cm.) is a macroscopic
distance. On one side, the slide is coated with sensitizer molecules, while on
the other side it is partially coated with acceptor molecules. If we illuminate
the slide from the sensitizer side with a frequency of light which only the
sensitizer molecules can absorb, and observe the fluorescence of the sensitizer
from the same side, we can answer the question of whether resonance energy
transfer can take place over macroscopic distances. If the transfer takes place,
the presence of the acceptors on the opposite side of the slide will reduce the
observed fluorescence of the sensitizer.

In the proposed experiment, sensitizer and acceptor molecules are chosen in such a way
that the emission maximum of the sensitizers corresponds to the absorption maximum of
the acceptors. Let ω1 be the frequency of light corresponding to the absorption maximum
of the sensitizer molecules, while ω2 ≈ ω3 is the frequency corresponding both to the
emission maximum of the sensitizers and the absorption maximum of the acceptors. The
slide is illuminated from the sensitizer side with light of frequency ω1, and radiation at
the frequency ω2 is observed from the sensitizer side, both on portions of the slide which
are coated with acceptors and portions where the acceptors are not present. If resonance
energy transfer over macroscopic distances is taking place, the fluorescence of the sensitizer
will be damped by the presence of acceptors on the opposite side of the slide.

Figure 10.2: This figure shows an alternative arrangement, where the 2mm. gap
is empty. Above the gap is a thin glass slide partially coated with accepter
molecules. Below the gap is another thin glass slide, completely coated with
sensitizer molecules.
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Experiments on long-distance resonance energy transfer, for example [205] [207] [208],
[209], [210], [211], have detected departures from the 1/R6 distance dependence predicted
Perrin-Förster theory, but until now only deviations in the nanometer range have been
detected We propose the following set of measurements, which aim at the detection of
resonance energy transfer over a macroscopic distance:

A glass slide roughly 2 mm. in thickness (a macroscopic distance) is uniformly coated
on one side with sensitizer molecules, as shown in Figure 1, while the opposite side of the
slide is partially coated with acceptor molecules. The sensitizer and acceptor molecules are
chosen in such a way that their absorption and emission bands lie in the visual range of the
spectrum, a range in which the glass slide is transparent. Furthermore, the sensitizer and
acceptor molecules should be chosen in such a way the the Stokes-shifted emission band of
the sensitizers overlaps maximally with the absorption band of the acceptors.

The slide is illuminated from the sensitizer side with a frequency of light, ω1, which
only the sensitizers can absorb, and, from the same side, the emission is observed at a
frequency, ω2, at which the sensitizer molecules fluoresce. If this fluorescence is damped on
the portion of the slide coated with acceptors, resonance energy transfer over macroscopic
distances will have been demonstrated. The trivial process, where a photon emitted by the
sensitizer, is absorbed by the acceptor, Stokes-shifted, and then fluoresced, could explain an
enhancement of intensity in the frequency region near the acceptor fluorescence maximum,
but not the loss of intensity in the frequency region near the fluorescence maximum of of
the sensitizer. No explanation besides resonance energy transfer can be devised to explain
such a loss.

The arrangement shown in Figure 2

The measurements should be repeated with the experimental arrangement shown in Figure
2. In this case, it is possible to perform the following initial experiments for the purpose
of calibration:

1. The following calibration experiments are performed on the slide with the acceptor
molecules by itself: The slide is illuminated from the acceptor side with light of
constant intensity I1, with frequencies varying over the entire relevant range. The
intensity of emitted light, I2, is measured at various points along the length of the
slide from the coated side, and the ratio I1/I2 is recorded, again with frequencies
varying over the entire range.

2. Another calibration experiment can be performed on the slide coated with sensitizer
molecules by itself: The slide is illuminated with a constant intensity, I0, from the
glass side, with frequencies running over the entire range. The corresponding fluo-
rescence intensities, I2, are measured from the sensitizer side, and the ratio I0/I2 is
recorded, again with frequencies varying over the entire range. Finally, the fluores-
cence intensity, I3, is measured from the glass side, and the ratio, I0/I3. is recorded
at all frequency combinations.
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Having performed these initial calibration experiments, we are ready for the sensitized
fluorescence experiment: The two slides are placed together with a 2 mm. gap, as shown in
Figure 2. We illuminate the slide with constant intensity, I0, from the sensitizer side, with
frequencies running over the entire range, and we record the fluorescence intensity, I3, from
the sensitizer side, at various points on the slide, at frequencies combinations running over
the entire range. If we see a loss of intensity of I3 at the frequency range corresponding to
the fluorescence maximum of the sensitizer, localized at the points of the side which are
nearest to the acceptor molecules, this can be interpreted as evidence of resonance energy
transfer to the acceptors.

If desired, the experiment can be simplified. The initial calibration experiments can
be omitted if the absorption maximum of the sensitizers, ω1, is known. The two slides,
arranged as shown in Figure 2 can be illuminated from the sensitizer side with intensity, I0,
and frequency ω1. The fluorescence intensity, I3, can then be measured at all frequencies,
at various points, from the sensitizer side. Loss of intensity in the frequency range corre-
sponding to the fluorescence maximum of the sensitizer, at points on the slide where the
sensitizers and acceptors are close, can still be interpreted as evidence of resonance energy
transfer. To explain this loss of sensitizer fluorescence intensity, one has to imagine that
before the sensitizer could fluoresce, it transferred its excitation energy to an acceptor.
As mentioned above, the trivial process might be invoked to explain an enhancement in
intensity in the frequency region near to the fluorescence maximum of the absorber, but it
cannot explain a loss of intensity in the frequency region near the fluorescence maximum
of the sensitizers in those portions of the slide where the sensitizers and acceptors are close
together. If observed, such a loss could only be explained by resonance energy transfer.

10.10 Discussion: Direct interparticle interaction

Despite the great successes of quantum field theories, they contain some logical incon-
sistencies. P.A.M. Dirac himself, the principal founder of quantum electrodynamics, was
dissatisfied with the theory as it stood because of these problems. Dirac once said that
renormalization is just a stop gap procedure, and there had to occur a fundamental change
in our ideas.

One serious problem with quantum field theories is the infinite self-energies that they
predict. Another difficulty is connected with Haag’s theorem. In an article entitled “Haag’s
Theorem as a Reason to Reconsider Direct-Action Theories”[Kastner, 2015a], R.E. Kastner
writes: “Haag showed that the interacting field demands an inequivalent representation
from that of the free field; the vacuum states of the two fields cannot be defined in the
same representation. This result presents a serious problem for the basic mathematical
consistency of quantum field theories, and has led to much discussion... Haag presented a
more general and formal result in which the infinite degrees of freedom of the quantized
field can be seen as the actual source of the problem.[203]”.

In their famous 1949 paper, J.A. Wheeler and R.P. Feynman say “...action at a distance
must have a close connection with field theory. But never does it consider the action
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of a charge on itself. The theory of direct interparticle action is equivalent, not to the
usual field theory, but to a modified or adjunct field theory..” In this adjunct field theory,
which incorporates the concept of direct interparticle interaction , the logical difficulties
of the usual theory are removed, for example the difficulties connected with giving the
electromagnetic field an infinite number of degrees of freedom, but the calculational power
of the usual theory is retained.

10.11 Feynman’s first seminar at Princeton

After graduating from MIT with a B.Sc. in physics (having published two papers while still
an undergraduate), Richard Feynman entered Princeton University as a graduate student.
Here is Wikipedia’s account of the first seminar that he gave there:

“Attendees at Feynman’s first seminar, which was on the classical version of the Wheeler-
Feynman absorber theory, included Albert Einstein, Wolfgang Pauli, and John von Neu-
mann. Pauli made the prescient comment that the theory would be extremely difficult to
quantize, and Einstein said that one might try to apply this method to gravity in general
relativity, which Sir Fred Hoyle and Jayant Narlikar did much later as the Hoyle-Narlikar
theory of gravity. Feynman received a Ph.D. from Princeton in 1942; his thesis advisor
was John Archibald Wheeler. His doctoral thesis was titled “The Principle of Least Ac-
tion in Quantum Mechanics”. Feynman had applied the principle of stationary action to
problems of quantum mechanics, inspired by a desire to quantize the Wheeler-Feynman
absorber theory of electrodynamics, and laid the groundwork for the path integral formu-
lation and Feynman diagrams. A key insight was that positrons behaved like electrons
moving backwards in time.”

James Gleick wrote: “This was Richard Feynman nearing the crest of his powers. At
twenty-three ... there may now have been no physicist on earth who could match his exu-
berant command over the native materials of theoretical science. It was not just a facility
at mathematics (though it had become clear ... that the mathematical machinery emerg-
ing in the Wheeler-Feynman collaboration was beyond Wheeler’s own ability). Feynman
seemed to possess a frightening ease with the substance behind the equations, like Einstein
at the same age, like the Soviet physicist Lev Landau - but few others.”
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Figure 10.3: Richard Feynman (1918-1988). Feynman shared the 1965 Nobel
Prize in Physics for his contributions to the development of quantum elec-
trodynamics. He was an inspiring and popular lecturer, much loved by his
students. Many of his lectures are available on the Internet.
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10.12 The absorber theory of radiation

Wheeler and Feynman’s 1949 paper

Here are some quotations from this famous paper:

“We... propose here to go back to the great basic problem of classical
physics the motion of a system of charged particles under the forces and to
inquire influence of electromagnetic what description of the interactions and
motions is possible’which is at the same time (1) well defined (2) economical
in postulates and (3) in agreement with experience.

“We conclude that these requirements are satisfied by the theory of action
at a distance of Schwarzschild, Tetrode, and Fokker. In this description of
nature no direct use is made of the notion of field. Each particle moves in
compliance with the principle of stationary action:

J = −
∑

a

mac

∫
(−daµdaµ)1/2 +

∑

a<b

(eaeb
c

)∫ ∫
δ (abµab

µ) (daνdb
ν) = extremum

(10.43)

“However unfamiliar this direct interparticle treatment compared to the
electrodynamics of Maxwell and Lorentz, it deals with the same problems,
talks about the same charges, considers the interaction of the same current
elements, obtains the same capacities, predicts the same inductances and yields
the same physical conclusions. Consequently action at a distance must have a
close connection with field theory. But never does it consider the action of a
charge on itself. The theory of direct interparticle action is equivalent, not to
the usual field theory, but to a modified or adjunct field theory...”

10.13 Karl Schwarzschild’s contributions to physics

Here are some quotations from the Wikipedia article about Karl Schwarzschild:

“Schwarzschild provided the first exact solution to the Einstein field equa-
tions of general relativity, for the limited case of a single spherical non-rotating
mass, which he accomplished in 1915, the same year that Einstein first in-
troduced general relativity. The Schwarzschild solution, which makes use of
Schwarzschild coordinates and the Schwarzschild metric, leads to a derivation
of the Schwarzschild radius, which is the size of the event horizon of a non-
rotating black hole...

“Thousands of dissertations, articles, and books have since been devoted to
the study of Schwarzschild’s solutions to the Einstein field equations. How-
ever, although Schwarzschild’s best known work lies in the area of general
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relativity, his research interests were extremely broad, including work in ce-
lestial mechanics, observational stellar photometry, quantum mechanics, in-
strumental astronomy, stellar structure, stellar statistics, Halley’s comet, and
spectroscopy...

“He also introduced a field free variational formulation of electrodynamics
(also known as “action at distance” or “direct interparticle action”) based only
on the world line of particles as

S =
∑

i

mi

∫

Ci

dsi +
1

2

∫ ∫

CiCj

qiqjδ (||PiPj||) dsidsj (10.44)

where Cα are the world lines of the particle, dsa the (vectorial) arc element along
the world line. Two points on two world lines contribute to the Lagrangian (are
coupled) only if they are a zero Minkowskian distance (connected by a light
ray), hence the term δ (||PiPj||). The idea was further developed by Tetrode and
Fokker in the 1920s and Wheeler and Feynman in the 1940s and constitutes an
alternative/equivalent formulation of electrodynamics.
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Figure 10.4: Karl Schwartzschild (1873-1916). He showed his exceptional abili-
ties early by publishing two papers on binary orbits in astronomy at the age
of 16.
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Appendix A

THE HISTORY OF COMPUTERS

A.1 Pascal and Leibniz

If civilization survives, historians in the distant future will undoubtedly regard the inven-
tion of computers as one of the most important steps in human cultural evolution - as
important as the invention of writing or the invention of printing. The possibilities of ar-
tificial intelligence have barely begun to be explored, but already the impact of computers
on society is enormous.

The invention of transisters was a crucial step in the history of computers, and this
invention in turn depended on the development of quantum theory. Thus quantum theory,
despite its highly abstract nature, has had an enormous impact on the modern world.

The first programmable universal computers were completed in the mid-1940’s; but
they had their roots in the much earlier ideas of Blaise Pascal (1623-1662), Gottfried
Wilhelm Leibniz (1646-1716), Joseph Marie Jacquard (1752-1834) and Charles Babbage
(1791-1871).

In 1642, the distinguished French mathematician and philosopher Blaise Pascal com-
pleted a working model of a machine for adding and subtracting. According to tradition,
the idea for his “calculating box” came to Pascal when, as a young man of 17, he sat
thinking of ways to help his father (who was a tax collector). In describing his machine,
Pascal wrote: “I submit to the public a small machine of my own invention, by means of
which you alone may, without any effort, perform all the operations of arithmetic, and may
be relieved of the work which has often times fatigued your spirit when you have worked
with the counters or with the pen.”

Pascal’s machine worked by means of toothed wheels. It was much improved by Leibniz,
who constructed a mechanical calculator which, besides adding and subtracting, could also
multiply and divide. His first machine was completed in 1671; and Leibniz’ description of
it, written in Latin, is preserved in the Royal Library at Hanover: “There are two parts
of the machine, one designed for addition (and subtraction), and the other designed for
multiplication (and division); and they should fit together. The adding (and subtracting)
machine coincides completely with the calculating box of Pascal. Something, however,

199



200 QUANTUM THEORY

Figure A.1: Blaise Pascal (1623-1662) was a French mathematician, physicist,
writer, inventor and theologian. Pascal, a child prodigy, was educated by his
father, who was a tax-collector. He invented his calculating box to make his
father’s work less tedious.
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Figure A.2: The German mathematician, philosopher and universal genius Got-
tfried Wilhelm von Leibniz (1646-1716) was a contemporary of Isaac Newton.
He invented differential and integral calculus independently, just as Newton
had done many years earlier. However, Newton had not published his work on
calculus, and thus a bitter controversy over priority was precipitated. When
his patron, the Elector of Hanover moved to England to become George I,
Leibniz was left behind because the Elector feared that the controversy would
alienate the English. Leibniz extended Pascal’s calculating box so that it could
perform multiplication and division. Calculators of his design were still being
used in the 1960’s.

must be added for the sake of multiplication...”

“The wheels which represent the multiplicand are all of the same size, equal to that of
the wheels of addition, and are also provided with ten teeth which, however, are movable
so that at one time there should protrude 5, at another 6 teeth, etc., according to whether
the multiplicand is to be represented five times or six times, etc.”

“For example, the multiplicand 365 consists of three digits, 3, 6, and 5. Hence the same
number of wheels is to be used. On these wheels, the multiplicand will be set if from the
right wheel there protrude 5 teeth, from the middle wheel 6, and from the left wheel 3.”

A.2 Jacquard and Babbage

By 1810, calculating machines based on Leibniz’ design were being manufactured commer-
cially; and mechanical calculators of a similar (if much improved) design could be found in
laboratories and offices until the 1960’s. The idea of a programmable universal computer
is due to the English mathematician, Charles Babbage, who was the Lucasian Professor of
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Figure A.3: Charles Babbage (1791-1871) and his analytical engine.

Mathematics at Cambridge University. (In the 17th century, Isaac Newton held this post,
and in the 20th century, P.A.M. Dirac and Stephen Hawking also held it.)

In 1812, Babbage conceived the idea of constructing a machine which could automat-
ically produce tables of functions, provided that the functions could be approximated
by polynomials. He constructed a small machine, which was able to calculate tables of
quadratic functions to eight decimal places, and in 1832 he demonstrated this machine to
the Royal Society and to representatives of the British government.

The demonstration was so successful that Babbage secured financial support for the
construction of a large machine which would tabulate sixth-order polynomials to twenty
decimal places. The large machine was never completed, and twenty years later, after
having spent seventeen thousand pounds on the project, the British government withdrew
its support. The reason why Babbage’s large machine was never finished can be understood
from the following account by Lord Moulton of a visit to the mathematician’s laboratory:

“One of the sad memories of my life is a visit to the celebrated mathematician and
inventor, Mr. Babbage. He was far advanced in age, but his mind was still as vigorous as
ever. He took me through his workrooms.”

“In the first room I saw the parts of the original Calculating Machine, which had been
shown in an incomplete state many years before, and had even been put to some use. I
asked him about its present form. ‘I have not finished it, because in working at it, I came
on the idea of my Analytical Machine, which would do all that it was capable of doing, and
much more. Indeed, the idea was so much simpler that it would have taken more work to
complete the Calculating Machine than to design and construct the other in its entirety;
so I turned my attention to the Analytical Machine.’”

“After a few minutes talk, we went into the next workroom, where he showed me the
working of the elements of the Analytical Machine. I asked if I could see it. ‘I have never
completed it,’ he said, ‘because I hit upon the idea of doing the same thing by a different
and far more effective method, and this rendered it useless to proceed on the old lines.’”
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Figure A.4: Joseph Marie Jacquard (1752-1834) invented a loom which could
be programed to produce any design by means of punched cards. News of
his invention inspired Babbage to invent a universal programmable computing
machine.

“Then we went into a third room. There lay scattered bits of mechanism, but I saw no
trace of any working machine. Very cautiously I approached the subject, and received the
dreaded answer: ‘It is not constructed yet, but I am working at it, and will take less time
to construct it altogether than it would have taken to complete the Analytical Machine
from the stage in which I left it.’ I took leave of the old man with a heavy heart.”

Babbage’s first calculating machine was a special-purpose mechanical computer, de-
signed to tabulate polynomial functions; and he abandoned this design because he had
hit on the idea of a universal programmable computer. Several years earlier, the French
inventor Joseph Marie Jacquard had constructed an automatic loom in which large wooden
“punched cards” were used to control the warp threads. Inspired by Jacquard’s invention,
Babbage planned to use punched cards to program his universal computer. (Jacquard’s
looms could be programmed to weave extremely complex patterns: A portrait of the in-
ventor, woven on one of his looms in Lyon, hung in Babbage’s drawing room.)

One of Babbage’s frequent visitors was Augusta Ada1, Countess of Lovelace (1815-
1852), the daughter of Lord and Lady Byron. She was a mathematician of considerable abil-
ity, and it is through her lucid descriptions that we know how Babbage’s never-completed
Analytical Machine was to have worked.

1 The programming language ADA is named after her.
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Figure A.5: Jacquard’s loom.
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Figure A.6: Lord Byron’s daughter, Augusta Ada, Countess of Lovelace (1815-
1852) was an accomplished mathematician and a frequent visitor to Babbage’s
workshop. It is through her lucid description of his ideas that we know how
Babbage’s universal calculating machine was to have worked. The program-
ming language ADA is named after her.
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A.3 Harvard’s sequence-controlled calculator

The next step towards modern computers was taken by Herman Hollerith, a statistician
working for the United States Bureau of the Census. He invented electromechanical ma-
chines for reading and sorting data punched onto cards. Hollerith’s machines were used to
analyze the data from the 1890 United States Census. Because the Census Bureau was a
very limited market, Hollerith branched out and began to manufacture similar machines
for use in business and administration. His company was later bought out by Thomas J.
Watson, who changed its name to International Business Machines.

In 1937, Howard Aiken, of Harvard University, became interested in combining Bab-
bage’s ideas with some of the techniques which had developed from Hollerith’s punched
card machines. He approached the International Business Machine Corporation, the largest
manufacturer of punched card equipment, with a proposal for the construction of a large,
automatic, programmable calculating machine.

Aiken’s machine, the Automatic Sequence Controlled Calculator (ASCC), was com-
pleted in 1944 and presented to Harvard University. Based on geared wheels, in the
Pascal-Leibniz-Babbage tradition, ASCC had more than three quarters of a million parts
and used 500 miles of wire. ASCC was unbelievably slow by modern standards - it took
three-tenths of a second to perform an addition - but it was one of the first programmable
general-purpose digital computers ever completed. It remained in continuous use, day and
night, for fifteen years.

Figure A.7: The Automatic Sequence-Controlled Calculator ASCC can still be
seen by visitors at Harvard’s science building and cafeteria.
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A.4 The first electronic computers

In the ASCC, binary numbers were represented by relays, which could be either on or off.
The on position represented 1, while the off position represented 0, these being the only
two digits required to represent numbers in the binary (base 2) system. Electromechanical
calculators similar to ASCC were developed independently by Konrad Zuse in Germany
and by George R. Stibitz at the Bell Telephone Laboratory.

Electronic digital computers

In 1937, the English mathematician A.M. Turing published an important article in the
Proceedings of the London Mathematical Society in which envisioned a type of calculating
machine consisting of a long row of cells (the “tape”), a reading and writing head, and a
set of instructions specifying the way in which the head should move the tape and modify
the state and “color” of the cells on the tape. According to a hypothesis which came to
be known as the “Church-Turing hypothesis”, the type of computer proposed by Turing
was capable of performing every possible type of calculation. In other words, the Turing
machine could function as a universal computer.

In 1943, a group of English engineers, inspired by the ideas of Alan Turing and those of
the mathematician M.H.A. Newman, completed the electronic digital computer Colossus.
Colossus was the first large-scale electronic computer. It was used to break the German
Enigma code; and it thus affected the course of World War II.

In 1946, ENIAC (Electronic Numerical Integrator and Calculator) became operational.
This general-purpose computer, designed by J.P. Eckert and J.W. Mauchley of the Uni-
versity of Pennsylvania, contained 18,000 vacuum tubes, one or another of which was often
out of order. However, during the periods when all its vacuum tubes were working, an
electronic computer like Colossus or ENIAC could shoot ahead of an electromechanical
machine (such as ASCC) like a hare outdistancing a tortoise.

During the summer of 1946, a course on “The Theory and Techniques of Electronic
Digital Computers” was given at the University of Pennsylvania. The ideas put forward in
this course had been worked out by a group of mathematicians and engineers headed by
J.P. Eckert, J.W. Mauchley and John von Neumann, and these ideas very much influenced
all subsequent computer design.

Cybernetics

The word “Cybernetics”, was coined by the American mathematician Norbert Wiener
(1894-1964) and his colleagues, who defined it as “the entire field of control and commu-
nication theory, whether in the machine or in the animal”. Wiener derived the word from
the Greek term for “steersman”.

Norbert Wiener began life as a child prodigy: He entered Tufts University at the age
of 11 and received his Ph.D. from Harvard at 19. He later became a professor of math-
ematics at the Massachusetts Institute of Technology. In 1940, with war on the horizon,
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Figure A.8: Alan Turing (1912-1954). He is considered to be the father of
theoretical computer science. During World War II, Turing’s work allowed the
allies to crack the German’s code. This appreciably shortened the length of
the war in Europe, and saved many lives.

Figure A.9: John von Neumann (1903-1957, right) with J. Robert Oppenheimer.
In the background is an electronic digital computer.
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Figure A.10: MIT’s Norbert Wiener (1894-1964) coined the word “Cybernetics”,
derived from a Greek word meaning “steersman”. Wiener was one of the
principle organizers of the Macy Conferences.

Wiener sent a memorandum to Vannevar Bush, another MIT professor who had done pi-
oneering work with analogue computers, and had afterwards become the chairman of the
U.S. National Defense Research Committee. Wiener’s memorandum urged the American
government to support the design and construction of electronic digital computers, which
would make use of binary numbers, vacuum tubes, and rapid memories. In such machines,
the memorandum emphasized, no human intervention should be required except when data
was to be read into or out of the machine.

Like Leo Szilard, John von Neumann, Claude Shannon and Erwin Schrödinger, Norbert
Wiener was aware of the relation between information and entropy. In his 1948 book Cy-
bernetics he wrote: “...we had to develop a statistical theory of the amount of information,
in which the unit amount of information was that transmitted by a single decision between
equally probable alternatives. This idea occurred at about the same time to several writers,
among them the statistician R.A. Fisher, Dr. Shannon of Bell Telephone Laboratories, and
the author. Fisher’s motive in studying this subject is to be found in classical statistical
theory; that of Shannon in the problem of coding information; and that of the author in
the problem of noise and message in electrical filters... The notion of the amount of in-
formation attaches itself very naturally to a classical notion in statistical mechanics: that
of entropy. Just as the amount of information in a system is a measure of its degree of
organization, so the entropy of a system is a measure of its degree of disorganization; and
the one is simply the negative of the other.”

During World War II, Norbert Wiener developed automatic systems for control of anti-
aircraft guns. His systems made use of feedback loops closely analogous to those with
which animals coordinate their movements. In the early 1940’s, he was invited to attend a
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Figure A.11: Margaret Mead (1901-1978) and Gregory Bateson (1904-1980).
They used the feedback loops studied by Wiener to explain many aspects of
human behavior. Bateson is considered to be one of the main founders of the
discipline Biosemiotics, which considers information to be the central feature
of living organisms.

series of monthly dinner parties organized by Arturo Rosenbluth, a professor of physiology
at Harvard University. The purpose of these dinners was to promote discussions and
collaborations between scientists belonging to different disciplines. The discussions which
took place at these dinners made both Wiener and Rosenbluth aware of the relatedness of
a set of problems that included homeostasis and feedback in biology, communication and
control mechanisms in neurophysiology, social communication among animals (or humans),
and control and communication involving machines.

Wiener and Rosenbluth therefore tried to bring together workers in the relevant fields
to try to develop common terminology and methods. Among the many people whom they
contacted were the anthropologists Gregory Bateson and Margaret Mead, Howard Aiken
(the designer of the Automatic Sequence Controlled Calculator), and the mathematician
John von Neumann. The Josiah Macy Jr. Foundation sponsored a series of ten yearly
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meetings, which continued until 1949 and which established cybernetics as a new research
discipline. It united areas of mathematics, engineering, biology, and sociology which had
previously been considered unrelated. Among the most important participants (in addition
to Wiener, Rosenbluth, Bateson, Mead, and von Neumann) were Heinz von Foerster, Kurt
Lewin, Warren McCulloch and Walter Pitts. The Macy conferences were small and infor-
mal, with an emphasis on discussion as opposed to the presentation of formal papers. A
stenographic record of the last five conferences has been published, edited by von Foerster.
Transcripts of the discussions give a vivid picture of the enthusiastic and creative atmo-
sphere of the meetings. The participants at the Macy Conferences perceived Cybernetics
as a much-needed bridge between the natural sciences and the humanities. Hence their
enthusiasm. Weiner’s feedback loops and von Neumann’s theory of games were used by
anthropologists Mead and Bateson to explain many aspects of human behavior.

A.5 Biosemiotics

The Oxford Dictionary of Biochemistry and Molecular Biology (Oxford University Press,
1997) defines Biosemiotics as “the study of signs, of communication, and of information in
living organisms”. The biologists Claus Emmeche and K. Kull offer another definition of
Biosemiotics: “biology that interprets living systems as sign systems”.

The American philosopher Charles Sanders Peirce (1839-1914) is considered to be one of
the founders of Semiotics (and hence also of Biosemiotics). Peirce studied philosophy and
chemistry at Harvard, where his father was a professor of mathematics and astronomy. He
wrote extensively on philosophical subjects, and developed a theory of signs and meaning
which anticipated many of the principles of modern Semiotics. Peirce built his theory on a
triad: (1) the sign, which represents (2) something to (3) somebody. For example, the sign
might be a broken stick, which represents a trail to a hunter, it might be the arched back of
a cat, which represents an aggressive attitude to another cat, it might be the waggle-dance
of a honey bee, which represents the coordinates of a source of food to her hive-mates, or
it might be a molecule of trans-10-cis-hexadecadienol, which represents irresistible sexual
temptation to a male moth of the species Bombyx mori. The sign might be a sequence of
nucleotide bases which represents an amino acid to the ribosome-transfer-RNA system, or
it might be a cell-surface antigen which represents self or non-self to the immune system.
In information technology, the sign might be the presence or absence of a pulse of voltage,
which represents a binary digit to a computer. Semiotics draws our attention to the sign
and to its function, and places much less emphasis on the physical object which forms
the sign. This characteristic of the semiotic viewpoint has been expressed by the Danish
biologist Jesper Hoffmeyer in the following words: “The sign, rather than the molecule, is
the basic unit for studying life.”

A second important founder of Biosemiotics was Jakob von Uexküll (1864-1944). He
was born in Estonia, and studied zoology at the University of Tartu. After graduation,
he worked at the Institute of Physiology at the University of Heidelberg, and later at the
Zoological Station in Naples. In 1907, he was given an honorary doctorate by Heidelberg
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Figure A.12: Charles Sanders Pearce (1839-1914).

Figure A.13: Jakob Johann Baron von Uexküll (1964-1944). Together with
Pearce and Bateson, he is one of the principle founders of Biosemiotics.
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for his studies of the physiology of muscles. Among his discoveries in this field was the first
recognized instance of negative feedback in an organism. Von Uexküll’s later work was
concerned with the way in which animals experience the world around them. To describe
the animal’s subjective perception of its environment he introduced the word Umwelt; and
in 1926 he founded the Institut fur Umweltforschung at the University of Heidelberg. Von
Uexküll visualized an animal - for example a mouse - as being surrounded by a world
of its own - the world conveyed by its own special senses organs, and processed by its
own interpretative systems. Obviously, the Umwelt will differ greatly depending on the
organism. For example, bees are able to see polarized light and ultraviolet light; electric
eels are able to sense their environment through their electric organs; many insects are
extraordinarily sensitive to pheromones; and a dog’s Umwelt far richer in smells than that
of most other animals. The Umwelt of a jellyfish is very simple, but nevertheless it exists.2

Von Uexküll’s Umwelt concept can even extend to one-celled organisms, which receive
chemical and tactile signals from their environment, and which are often sensitive to light.
The ideas and research of Jakob von Uexküll inspired the later work of the Nobel Laureate
ethologist Konrad Lorenz, and thus von Uexküll can be thought of as one of the founders of
ethology as well as of Biosemiotics. Indeed, ethology and Biosemiotics are closely related.

Biosemiotics also values the ideas of the American anthropologist Gregory Bateson
(1904-1980), who was mentioned in Chapter 7 in connection with cybernetics and with the
Macy Conferences. He was married to another celebrated anthropologist, Margaret Mead,
and together they applied Norbert Wiener’s insights concerning feedback mechanisms to
sociology, psychology and anthropology. Bateson was the originator of a famous epigram-
matic definition of information: “..a difference which makes a difference” . This definition
occurs in Chapter 3 of Bateson’s book, Mind and Nature: A Necessary Unity, Bantam,
(1980), and its context is as follows: “To produce news of a difference, i.e. information”,
Bateson wrote, “there must be two entities... such that news of their difference can be
represented as a difference inside some information-processing entity, such as a brain or,
perhaps, a computer. There is a profound and unanswerable question about the nature of
these two entities that between them generate the difference which becomes information
by making a difference. Clearly each alone is - for the mind and perception - a non-entity,
a non-being... the sound of one hand clapping. The stuff of sensation, then, is a pair of
values of some variable, presented over time to a sense organ, whose response depends on
the ratio between the members of the pair.”

Microelectronics

The problem of unreliable vacuum tubes was solved in 1948 by John Bardeen, William
Shockley and Walter Brattain of the Bell Telephone Laboratories. Application of quantum
theory to solids had lead to an understanding of the electrical properties of crystals. Like
atoms, crystals were found to have allowed and forbidden energy levels.

2 It is interesting to ask to what extent the concept of Umwelt can be equated to that of consciousness.
To the extent that these two concepts can be equated, von Uexküll’s Umweltforschung offers us the
opportunity to explore the phylogenetic evolution of the phenomenon of consciousness.
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The allowed energy levels for an electron in a crystal were known to form bands, i.e.,
some energy ranges with many allowed states (allowed bands), and other energy ranges
with none (forbidden bands). The lowest allowed bands were occupied by electrons, while
higher bands were empty. The highest filled band was called the “valence band”, and the
lowest empty band was called the “conduction band”.

According to quantum theory, whenever the valence band of a crystal is only partly
filled, the crystal is a conductor of electricity; but if the valence band is completely filled
with electrons, the crystal is an electrical insulator. (A completely filled band is analogous
to a room so packed with people that none of them can move.)

In addition to conductors and insulators, quantum theory predicted the existence of
“semiconductors” - crystals where the valence band is completely filled with electrons, but
where the energy gap between the conduction band and the valence band is very small.
For example, crystals of the elements silicon and germanium are semiconductors. For such
a crystal, thermal energy is sometimes enough to lift an electron from the valence band to
the conduction band.

Bardeen, Shockley and Brattain found ways to control the conductivity of germanium
crystals by injecting electrons into the conduction band, or alternatively by removing elec-
trons from the valence band. They could do this by “doping” the crystals with appropriate
impurities, or by injecting electrons with a special electrode. The semiconducting crystals
whose conductivity was controlled in this way could be used as electronic valves, in place
of vacuum tubes.

By the 1960’s, replacement of vacuum tubes by transistors in electronic computers had
led not only to an enormous increase in reliability and a great reduction in cost, but also
to an enormous increase in speed. It was found that the limiting factor in computer speed
was the time needed for an electrical signal to propagate from one part of the central
processing unit to another. Since electrical impulses propagate with the speed of light,
this time is extremely small; but nevertheless, it is the limiting factor in the speed of
electronic computers.

A.6 The Traitorous Eight

According to the Wikipedia article on Shockley,
“In 1956 Shockley moved from New Jersey to Mountain View, California to start Shock-

ley Semiconductor Laboratory to live closer to his ailing mother in Palo Alto, California.
The company, a division of Beckman Instruments, Inc., was the first establishment working
on silicon semiconductor devices in what came to be known as Silicon Valley.

“His way [of leading the group] could generally be summed up as domineering and
increasingly paranoid. In one well-known incident, he claimed that a secretary’s cut thumb
was the result of a malicious act and he demanded lie detector tests to find the culprit, when
in reality, the secretary had simply grabbed at a door handle that happened to have an
exposed tack on it for the purpose of hanging paper notes on. After he received the Nobel
Prize in 1956 his demeanor changed, as evidenced in his increasingly autocratic, erratic and



A.6. THE TRAITOROUS EIGHT 215

Figure A.14: William Shockley (1910-1989) shared the 1956 Nobel Prize in
Physics with John Bardeen and Walter Brattain.

hard-to-please management style. In late 1957, eight of Shockley’s researchers, who would
come to be known as the ‘traitorous eight, resigned after Shockley decided not to continue
research into silicon-based semiconductors. They went on to form Fairchild Semiconductor,
a loss from which Shockley Semiconductor never recovered. Over the course of the next
20 years, more than 65 new enterprises would end up having employee connections back
to Fairchild.”
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Figure A.15: The Traitorous Eight: From left to right, Gordon Moore, C. Shel-
don Roberts, Eugene Kleiner, Robert Noyce, Victor Grinich, Julius Blank,
Jean Hoerni and Jay Last.
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A.7 Integrated circuits

In order to reduce the propagation time, computer designers tried to make the central
processing units very small; and the result was the development of integrated circuits
and microelectronics. (Another motive for miniaturization of electronics came from the
requirements of space exploration.)

Integrated circuits were developed in which single circuit elements were not manufac-
tured separately. Instead, the whole circuit was made at one time. An integrated circuit
is a sandwich-like structure, with conducting, resisting and insulating layers interspersed
with layers of germanium or silicon, “doped ” with appropriate impurities. At the start of
the manufacturing process, an engineer makes a large drawing of each layer. For example,
the drawing of a conducting layer would contain pathways which fill the role played by
wires in a conventional circuit, while the remainder of the layer would consist of areas
destined to be etched away by acid.

The next step is to reduce the size of the drawing and to multiply it photographically.
The pattern of the layer is thus repeated many times, like the design on a piece of wallpaper.
The multiplied and reduced drawing is then focused through a reversed microscope onto
the surface to be etched.

Successive layers are built up by evaporating or depositing thin films of the appropriate
substances onto the surface of a silicon or germanium wafer. If the layer being made is to be
conducting, the surface would consist of an extremely thin layer of copper, covered with a
photosensitive layer called a “photoresist”. On those portions of the surface receiving light
from the pattern, the photoresist becomes insoluble, while on those areas not receiving
light, the photoresist can be washed away.

The surface is then etched with acid, which removes the copper from those areas not
protected by photoresist. Each successive layer of a wafer is made in this way, and finally
the wafer is cut into tiny “chips”, each of which corresponds to one unit of the wallpaper-
like pattern.

Although the area of a chip may be much smaller than a square centimeter, the chip
can contain an extremely complex circuit. A typical programmable minicomputer or
“microprocessor”, manufactured during the 1970’s, could have 30,000 circuit elements, all
of which were contained on a single chip. By 1986, more than a million transistors were
being placed on a single chip.

As a result of miniaturization, the speed of computers rose steadily. In 1960, the fastest
computers could perform a hundred thousand elementary operations in a second. By 1970,
the fastest computers took less than a second to perform a million such operations. In 1987,
a computer called GF11 was designed to perform 11 billion floating-point operations (flops)
per second.

GF11 (Gigaflop 11) is a scientific parallel-processing machine constructed by IBM.
Approximately ten floating-point operations are needed for each machine instruction. Thus
GF11 runs at the rate of approximately a thousand million instructions per second (1,100
MIPS). The high speed achieved by parallel-processing machines results from dividing a job
into many sub-jobs on which a large number of processing units can work simultaneously.
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Computer memories have also undergone a remarkable development. In 1987, the
magnetic disc memories being produced could store 20 million bits of information per
square inch; and even higher densities could be achieved by optical storage devices. (A
“bit” is the unit of information. For example, the number 25, written in the binary system,
is 11001. To specify this 5-digit binary number requires 5 bits of information. To specify
an n-digit binary number requires n bits of information. Eight bits make a “byte”.)

In the 1970’s and 1980’s, computer networks were set up linking machines in various
parts of the world. It became possible (for example) for a scientist in Europe to perform
a calculation interactively on a computer in the United States just as though the distant
machine were in the same room; and two or more computers could be linked for perform-
ing large calculations. It also became possible to exchange programs, data, letters and
manuscripts very rapidly through the computer networks.

A.8 Moore’s law

In 1965, only four years after the first integrated circuits had been produced, Dr. Gordon
E. Moore, one of the founders of Intel, made a famous prediction which has come to be
known as “Moore’s Law”. He predicted that the number of transistors per integrated
circuit would double every two years, and that this trend would continue through 1975. In
fact, the general trend predicted by Moore has continued for a much longer time. Although
the number of transistors per unit area has not continued to double every two years, the
logic density (bits per unit area) has done so, and thus a modified version of Moore’s law
still holds today. How much longer the trend can continue remains to be seen. Physical
limits to miniaturization of transistors of the present type will soon be reached; but there
is hope that further miniaturization can be achieved through “quantum dot” technology,
molecular switches, and autoassembly.

A typical programmable minicomputer or “microprocessor”, manufactured in the 1970’s,
could have 30,000 circuit elements, all of which were contained on a single chip. By 1989,
more than a million transistors were being placed on a single chip; and by 2000, the number
reached 42,000,000.

As a result of miniaturization and parallelization, the speed of computers rose expo-
nentially. In 1960, the fastest computers could perform a hundred thousand elementary
operations in a second. By 1970, the fastest computers took less than a second to per-
form a million such operations. In 1987, a massively parallel computer, with 566 parallel
processors, called GFll was designed to perform 11 billion floating-point operations per
second (flops). By 2002 the fastest computer performed 40 at teraflops, making use of
5120 parallel CPU’s.

Computer disk storage has also undergone a remarkable development. In 1987, the
magnetic disk storage being produced could store 20 million bits of information per square
inch; and even higher densities could be achieved by optical storage devices. Storage
density has until followed a law similar to Moore’s law.

In the 1970’s and 1980’s, computer networks were set up linking machines in various
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Figure A.16: Gordon E. Moore (born 1929), a founder of Intel and the author
of Moore’s Law. In 1965 he predicted that the number of components in
integrated circuits would double every year for the next 10 years”. In 1975 he
predicted the this doubling would continue, but revised the doubling rate to
“every two years. Astonishingly, Moore’s Law has held much longer than he,
or anyone else, anticipated.
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Figure A.17: Amazingly, Moore’s Law has held much longer than he, or anyone
else, anticipated. Perhaps quantum dot technologies can extend its validity
even longer.

Figure A.18: A logarithmic plot of the increase in PC hard-drive capacity in
gigabytes. An extrapolation of the rate of increase predicts that the individual
capacity of a commercially available PC will reach 10,000 gigabytes by 2015, i.e.
10,000,000,000,000 bytes. (After Hankwang and Rentar, Wikimedia Commons)
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parts of the world. It became possible (for example) for a scientist in Europe to perform
a calculation interactively on a computer in the United States just as though the distant
machine were in the same room; and two or more computers could be linked for perform-
ing large calculations. It also became possible to exchange programs, data, letters and
manuscripts very rapidly through the computer networks.

The exchange of large quantities of information through computer networks was made
easier by the introduction of fiber optics cables. By 1986, 250,000 miles of such cables had
been installed in the United States. If a ray of light, propagating in a medium with a large
refractive index, strikes the surface of the medium at a grazing angle, then the ray undergoes
total internal reflection. This phenomenon is utilized in fiber optics: A light signal can
propagate through a long, hairlike glass fiber, following the bends of the fiber without
losing intensity because of total internal reflection. However, before fiber optics could be
used for information transmission over long distances, a technological breakthrough in glass
manufacture was needed, since the clearest glass available in 1940 was opaque in lengths
more than 10 m. Through studies of the microscopic properties of glasses, the problem of
absorption was overcome. By 1987, devices were being manufactured commercially that
were capable of transmitting information through fiber-optic cables at the rate of 1.7 billion
bits per second.

A.9 Self-reinforcing information accumulation

Humans have been living on the earth for roughly two million years (more or less, depending
on where one draws the line between our human and prehuman ancestors, Table 6.1).
During almost all of this,time, our ancestors lived by hunting and food-gathering. They
were not at all numerous, and did not stand out conspicuously from other animals. Then,
suddenly, during the brief space of ten thousand years, our species exploded in numbers
from a few million to seven billion, populating all parts of the earth, and even setting foot
on the moon. This population explosion, which is still going on, has been the result of
dramatic cultural changes. Genetically we are almost identical with our hunter-gatherer
ancestors, who lived ten thousand years ago, but cultural evolution has changed our way
of life beyond recognition.

Beginning with the development of speech, human cultural evolution began to accel-
erate. It started to move faster with the agricultural revolution, and faster still with the
invention of writing and printing. Finally, modern science has accelerated the rate of social
and cultural change to a completely unprecedented speed.

The growth of modern science is accelerating because knowledge feeds on itself. A new
idea or a new development may lead to several other innovations, which can in turn start
an avalanche of change. For example, the quantum theory of atomic structure led to the in-
vention of transistors, which made high-speed digital computers possible. Computers have
not only produced further developments in quantum theory; they have also revolutionized
many other fields.

The self-reinforcing accumulation of knowledge - the information explosion - which
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characterizes modern human society is reflected not only in an explosively-growing global
population, but also in the number of scientific articles published, which doubles roughly
every ten years. Another example is Moore’s law - the doubling of the information density
of integrated circuits every two years. Yet another example is the explosive growth of
Internet traffic shown in Table 17.1.

The Internet itself is the culmination of a trend towards increasing societal information
exchange - the formation of a collective human consciousness. This collective consciousness
preserves the observations of millions of eyes, the experiments of millions of hands, the
thoughts of millions of brains; and it does not die when the individual dies.

A.10 Automation

During the last three decades, the cost of computing has decreased exponentially by be-
tween twenty and thirty percent per year. Meanwhile, the computer industry has grown
exponentially by twenty percent per year (faster than any other industry). The astonish-
ing speed of this development has been matched by the speed with which computers have
become part of the fabric of science, engineering, industry, commerce, communications,
transport, publishing, education and daily life in the industrialized parts of the world.

The speed, power and accuracy of computers has revolutionized many branches of
science. For example, before the era of computers, the determination of a simple molecular
structure by the analysis of X-ray diffraction data often took years of laborious calculation;
and complicated structures were completely out of reach. In 1949, however, Dorothy
Crowfoot Hodgkin used an electronic computer to work out the structure of penicillin from
X-ray data. This was the first application of a computer to a biochemical problem; and it
was followed by the analysis of progressively larger and more complex structures.

Proteins, DNA, and finally even the detailed structures of viruses were studied through
the application of computers in crystallography. The enormous amount of data needed for
such studies was gathered automatically by computer-controlled diffractometers; and the
final results were stored in magnetic-tape data banks, available to users through computer
networks.

The application of quantum theory to chemical problems is another field of science
which owes its development to computers. When Erwin Schrödinger wrote down his
wave equation in 1926, it became possible, in principle, to calculate most of the physical
and chemical properties of matter. However, the solutions to the Schrödinger equation
for many-particle systems can only be found approximately; and before the advent of
computers, even approximate solutions could not be found, except for the simplest systems.

When high-speed electronic digital computers became widely available in the 1960’s, it
suddenly became possible to obtain solutions to the Schrödinger equation for systems of
chemical and even biochemical interest. Quantum chemistry (pioneered by such men as
J.C. Slater, R.S. Mullikin, D.R. Hartree, V. Fock, J.H. Van Vleck, L. Pauling, E.B. Wilson,
P.O. Löwdin, E. Clementi, C.J. Ballhausen and others) developed into a rapidly-growing
field, as did solid state physics. Through the use of computers, it became possible to
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design new materials with desired chemical, mechanical, electrical or magnetic properties.
Applying computers to the analysis of reactive scattering experiments, D. Herschbach,
J. Polanyi and Y. Lee were able to achieve an understanding of the dynamics of chemical
reactions.

The successes of quantum chemistry led Albert Szent-Györgyi, A. and B. Pullman, H.
Scheraga and others to pioneer the fields of quantum biochemistry and molecular dynam-
ics. Computer programs for drug design were developed, as well as molecular-dynamics
programs which allowed the conformations of proteins to be calculated from a knowledge of
their amino acid sequences. Studies in quantum biochemistry have yielded insights into the
mechanisms of enzyme action, photosynthesis, active transport of ions across membranes,
and other biochemical processes.

In medicine, computers began to be used for monitoring the vital signs of critically ill
patients, for organizing the information flow within hospitals, for storing patients’ records,
for literature searches, and even for differential diagnosis of diseases.

The University of Pennsylvania has developed a diagnostic program called INTERNIST-
1, with a knowledge of 577 diseases and their interrelations, as well as 4,100 signs, symp-
toms and patient characteristics. This program was shown to perform almost as well as
an academic physician in diagnosing difficult cases. QMR (Quick Medical Reference), a
microcomputer adaptation of INTERNIST-1, incorporates the diagnostic functions of the
earlier program, and also offers an electronic textbook mode.

Beginning in the 1960’s, computers played an increasingly important role in engineering
and industry. For example, in the 1960’s, Rolls Royce Ltd. began to use computers not
only to design the optimal shape of turbine blades for aircraft engines, but also to control
the precision milling machines which made the blades. In this type of computer-assisted
design and manufacture, no drawings were required. Furthermore, it became possible for
an industry requiring a part from a subcontractor to send the machine-control instructions
for its fabrication through the computer network to the subcontractor, instead of sending
drawings of the part.

In addition to computer-controlled machine tools, robots were also introduced. They
were often used for hazardous or monotonous jobs, such as spray-painting automobiles; and
they could be programmed by going through the job once manually in the programming
mode. By 1987, the population of robots in the United States was between 5,000 and 7,000,
while in Japan, the Industrial Robot Association reported a robot population of 80,000.

Chemical industries began to use sophisticated computer programs to control and to
optimize the operations of their plants. In such control systems, sensors reported cur-
rent temperatures, pressures, flow rates, etc. to the computer, which then employed a
mathematical model of the plant to calculate the adjustments needed to achieve optimum
operating conditions.

Not only industry, but also commerce, felt the effects of computerization during the
postwar period. Commerce is an information-intensive activity; and in fact some of the
crucial steps in the development of information-handling technology developed because of
the demands of commerce: The first writing evolved from records of commercial trans-
actions kept on clay tablets in the Middle East; and automatic business machines, using
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punched cards, paved the way for the development of the first programmable computers.
Computerization has affected wholesaling, warehousing, retailing, banking, stockmarket

transactions, transportation of goods - in fact, all aspects of commerce. In wholesaling,
electronic data is exchanged between companies by means of computer networks, allowing
order-processing to be handled automatically; and similarly, electronic data on prices is
transmitted to buyers.

The key to automatic order-processing in wholesaling was standardization. In the
United States, the Food Marketing Institute, the Grocery Manufacturers of America, and
several other trade organizations, established the Uniform Communications System (UCS)
for the grocery industry. This system specifies a standard format for data on products,
prices and orders.

Automatic warehouse systems were designed as early as 1958. In such systems, the
goods to be stored are placed on pallets (portable platforms), which are stacked automat-
ically in aisles of storage cubicles. A computer records the position of each item for later
automatic retrieval.

In retailing, just as in wholesaling, standardization proved to be the key requirement for
automation. Items sold in supermarkets in most industrialized countries are now labeled
with a standard system of machine-readable thick and thin bars known as the Universal
Product Code (UPC). The left-hand digits of the code specify the manufacturer or packer
of the item, while the right-hand set of digits specify the nature of the item. A final digit
is included as a check, to make sure that the others were read correctly. This last digit
(called a modulo check digit) is the smallest number which yields a multiple of ten when
added to the sum of the previous digits.

When a customer goes through a check-out line, the clerk passes the purchased items
over a laser beam and photocell, thus reading the UPC code into a small embedded com-
puter or microprocessor at the checkout counter, which adds the items to the customer’s
bill. The microprocessor also sends the information to a central computer and inventory
data base. When stocks of an item become low, the central computer generates a re-
placement order. The financial book-keeping for the retailing operation is also carried out
automatically by the central computer.

In many places, a customer passing through the checkout counter of a supermarket is
able to pay for his or her purchases by means of a plastic card with a magnetic, machine-
readable identification number. The amount of the purchase is then transmitted through
a computer network and deducted automatically from the customer’s bank account. If the
customer pays by check, the supermarket clerk may use a special terminal to determine
whether a check written by the customer has ever “bounced”.

Most checks are identified by a set of numbers written in the Magnetic-Ink Character
Recognition (MICR) system. In 1958, standards for the MICR system were established,
and by 1963, 85 percent of all checks written in the United States were identified by MICR
numbers. By 1968, almost all banks had adopted this system; and thus the administration
of checking accounts was automated, as well as the complicated process by which a check,
deposited anywhere in the world, returns to the payers bank.

Container ships were introduced in the late 1950’s, and since that time, container sys-
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tems have increased cargo-handling speeds in ports by at least an order of magnitude.
Computer networks contributed greatly to the growth of the container system of trans-
portation by keeping track of the position, ownership and contents of the containers.

In transportation, just as in wholesaling and retailing, standardization proved to be
a necessary requirement for automation. Containers of a standard size and shape could
be loaded and unloaded at ports by specialized tractors and cranes which required only
a very small staff of operators. Standard formats for computerized manifests, control
documents, and documents for billing and payment, were instituted by the Transportation
Data Coordinating Committee, a non-profit organization supported by dues from shipping
firms.

In the industrialized parts of the world, almost every type of work has been made
more efficient by computerization and automation. Even artists, musicians, architects
and authors find themselves making increasing use of computers: Advanced computing
systems, using specialized graphics chips, speed the work of architects and film animators.
The author’s traditional typewriter has been replaced by a word-processor, the composer’s
piano by a music synthesizer.

In the Industrial Revolution of the 18th and 19th centuries, muscles were replaced
by machines. Computerization represents a Second Industrial Revolution: Machines have
begun to perform not only tasks which once required human muscles, but also tasks which
formerly required human intelligence.

In industrial societies, the mechanization of agriculture has very much reduced the
fraction of the population living on farms. For example, in the United States, between
1820 and 1980, the fraction of workers engaged in agriculture fell from 72 percent to 3.1
percent. There are signs that computerization and automation will similarly reduce the
number of workers needed in industry and commerce.

Computerization is so recent that, at present, we can only see the beginnings of its
impact; but when the Second Industrial Revolution is complete, how will it affect society?
When our children finish their education, will they face technological unemployment?

The initial stages of the First Industrial Revolution produced much suffering, because
labor was regarded as a commodity to be bought and sold according to the laws of supply
and demand, with almost no consideration for the needs of the workers. Will we repeat
this mistake? Or will society learn from its earlier experience, and use the technology of
automation to achieve widely-shared human happiness?

The Nobel-laureate economist, Wassily W. Leontief, has made the following comment
on the problem of technological unemployment:

“Adam and Eve enjoyed, before they were expelled from Paradise, a high standard of
living without working. After their expulsion, they and their successors were condemned
to eke out a miserable existence, working from dawn to dusk. The history of technological
progress over the last 200 years is essentially the story of the human species working its
way slowly and steadily back into Paradise. What would happen, however, if we suddenly
found ourselves in it? With all goods and services provided without work, no one would
be gainfully employed. Being unemployed means receiving no wages. As a result, until ap-
propriate new income policies were formulated to fit the changed technological conditions,
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everyone would starve in Paradise.”
To say the same thing in a slightly different way: consider what will happen when

a factory which now employs a thousand workers introduces microprocessor-controlled
industrial robots and reduces its work force to only fifty. What will the nine hundred
and fifty redundant workers do? They will not be able to find jobs elsewhere in industry,
commerce or agriculture, because all over the economic landscape, the scene will be the
same.

There will still be much socially useful work to be done - for example, taking care of
elderly people, beautifying the cities, starting youth centers, planting forests, cleaning up
pollution, building schools in developing countries, and so on. These socially beneficial
goals are not commercially “profitable”. They are rather the sort of projects which gov-
ernments sometimes support if they have the funds for it. However, the money needed to
usefully employ the nine hundred and fifty workers will not be in the hands of the govern-
ment. It will be in the hands of the factory owner who has just automated his production
line.

In order to make the economic system function again, either the factory owner will have
to be persuaded to support socially beneficial but commercially unprofitable projects, or
else an appreciable fraction of his profits will have to be transferred to the government,
which will then be able to constructively re-employ the redundant workers.

The future problems of automation and technological unemployment may force us to
rethink some of our economic ideas. It is possible that helping young people to make a
smooth transition from education to secure jobs will become one of the important respon-
sibilities of governments, even in countries whose economies are based on free enterprise.
If such a change does take place in the future, while at the same time socialistic countries
are adopting a few of the better features of free enterprise, then one can hope that the
world will become less sharply divided by contrasting economic systems.

A.11 Neural networks

Physiologists have begun to make use of insights derived from computer design in their
efforts to understand the mechanism of the brain; and computer designers are beginning
to construct computers modeled after neural networks. We may soon see the development
of computers capable of learning complex ideas, generalization, value judgements, artistic
creativity, and much else that was once thought to be uniquely characteristic of the human
mind. Efforts to design such computers will undoubtedly give us a better understanding
of the way in which the brain performs its astonishing functions.

Much of our understanding of the nervous systems of higher animals is due to the
Spanish microscopist, Ramón y Cajal, and to the English physiologists, Alan Hodgkin and
Andrew Huxley. Cajal’s work, which has been confirmed and elaborated by modern
electron microscopy, showed that the central nervous system is a network of nerve cells
(neurons) and threadlike fibers growing from them. Each neuron has many input fibers
(dendrites), and one output fiber (the axon), which may have several branches.
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S It is possible the computers of the future will have pattern-recognition and learning
abilities derived from architecture inspired by our understanding of the synapse, by Young’s
model, or by other biological models. However, pattern recognition and learning can also be
achieved by programming, using computers of conventional architecture. Programs already
exist which allow computers to understand both handwriting and human speech; and a
recent chess-playing program was able to learn by studying a large number of championship
games. Having optimized its parameters by means of this learning experience, the chess-
playing program was able to win against grand masters!

Like nuclear physics and genesplicing, artificial intelligence presents a challenge: Will
society use its new powers wisely and humanely? The computer technology of the future
can liberate us from dull and repetitive work, and allow us to use our energies creatively;
or it can produce unemployment and misery, depending on how we organize our society.
Which will we choose?
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Appendix B

GROUP THEORY

B.1 Finite Groups

The definition of a finite group

A finite group is defined by the following conditions:

1. If any two elements belonging to the group are multiplied together, the product is
another element belonging to the group.

2. There is an identity element.

3. Each element has an inverse.

4. Multiplication of the elements is associative1, but necessarily commutative.

5. The group contains g elements, where g is a finite positive integer called the order of
the group.

As a simple example, we might think of a molecule which is symmetric with respect
to rotations through an angle of 2π/3 about some axis but which has no other symmetry.
Then the set of geometrical operations that leave the molecule invariant form a group
containing 3 elements: the identity element; a rotation through an angle 2π/3 about the
axis of symmetry, and a rotation through an angle 4π/3 about the same axis. Let us denote
these operations respectively by E, C3, and C−1

3 . We can easily construct a multiplication
table for the group. If we do so, each element of the group will appear once and only once
in any row or column of the multiplication table. This follows from the fact that AX = B
has one and only one solution among the group elements. Since A−1 and B belong to
the group, and since the product of any two elements belongs to the group, X = A−1B
is also a uniquely-defined element. Now suppose that the element B appears more than
once in the Ath row of the multiplication table. Then AX = B will have more than one

1A(BC)=(AB)C

239
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solution which is impossible. Since no element can appear more than once, each element
must appear once because there are g elements and g places in the row, all of which have
to be filled.

B.2 Representations of geometrical symmetry groups

The elements of a geometrical symmetry group are linear coordinate transformations. Such
transformations have the form

X i =
d∑

j=1

∂X i

∂xj
xj + bi (B.1)

where ∂X i/∂xj and bi are constants.
Now consider a set of functions Φ1, Φ2, ..., ΦM . We can use equation (B.1) to express

Φ1(x) as a function of X. If we then expand the resulting function of X in terms of the
other |Φn〉’s, we shall obtain a relation of the form

Φn(x) =
∑

n′

Φn′(X)Dn′,n (B.2)

If we denote the coordinate transformation in equation (B.1) by the symbol G, we can
rewrite equations (B.1) and (B.2) in the form:

X = Gjx

Φn(x) ≡ Φn(G−1
j X) ≡ GjΦn(X)

=
∑

n′

Φn′(X)Dn′,n(G) (B.3)

In this sense, the coordinate transformation defines an operator Gj, and Dn′,n(Gj) is a
matrix representing Gj. Is can easily be shown that the matrices representing a set of
operators G1, G2,...,Gg in a given basis, obey the same multiplication table as the operators
themselves. For example, if we know that

C3C
−1
3 = E (B.4)

and that

C3Φn =
∑

n′

Φn′Dn′,n(C3)

C−1
3 Φn =

∑

n′

Φn′Dn′,n(C−1
3 )

EΦn =
∑

n′

Φn′Dn′,n(E) (B.5)
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then it follows that:

C3C
−1
3 Φn =

∑

n′

C3Φn′Dn′,n(C−1
3 )

=
∑

n′′

Φn′′

{∑

n′

Dn′′,n′(C3)Dn′,n(C−1
3 )

}

= EΦn =
∑

n′′

Φn′′Dn′′,n(E) (B.6)

so that we must have

Dn′′,n(E) =
∑

n′

Dn′′,n′(C3)Dn′,n(C−1
3 ) (B.7)

Thus given any set of basis functions Φ1, Φ2, ..., ΦM which mix together under the ele-
ments of a group G1, G2,...,Gg, we can obtain a set of matrices Dn′,n(Gj) defined by the
relationships

GjΦn =
∑

n′

Φn′Dn′,n(Gj) j = 1, 2, ..., g (B.8)

These matrices will obey the same multiplication table as the operators G1, G2,...,Gg, and
they are said to form a matrix representation of the group.

B.3 Similarity transformations

Now let us consider another representation, D′m′,m(Gj), based on a set of functions Φ′1, Φ′2,
..., Φ′M which are related to our original set Φ1, Φ2, ..., ΦM by the transformation:

Φ′m =
∑

n

ΦnSn,m

Φn =
∑

m

Φ′mS
−1
m,n (B.9)

The primed representation is defined by the relationship

GjΦ
′
m =

∑

m′

Φ′m′D
′
m′,m(Gj) j = 1, 2, ..., g (B.10)

Then from equations (B.8)-(B.10) we have

GjΦ
′
m =

∑

m′

Φ′m′D
′
m′,m(Gj)

= Gj

∑

n

ΦnSn,m

=
∑

n,n′

Φn′Dn′,n(Gj)Sn,m

=
∑

m′,n,n′

Φ′m′S
−1
m′,n′Dn′,n(Gj)Sn,m (B.11)
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so that we must have

D′m′,m(Gj) =
∑

n,n′

S−1
m′,n′Dn′,n(Gj)Sn,m (B.12)

or

D′ = S−1DS (B.13)

A transformation of this type, where the matrix S need not be unitary, is called a ‘similarity
transformation’.

B.4 Characters and reducibility

The character χ(Gj) of the matrix Dn′,n(Gj) is defined as the sum of the diagonal elements:

χ(Gj) ≡
∑

n

Dn,n(Gj) (B.14)

We would like to show that the character of each element in a representation of a finite
group is invariant under a similarity transformation. From equations (B.12) and (B.14) we
have:

χ′(Gj) ≡
∑

m

D′m,m(Gj)

=
∑

m,n,n′

S−1
m,n′Dn′,n(Gj)Sn,m

=
∑

n,n′

(∑

m

Sn,mS
−1
m,n′

)
Dn′,n(Gj)

=
∑

n,n′

δn′,nDn′,n(Gj)

=
∑

n

Dn,n(Gj) = χ(Gj) q.e.d. (B.15)

If two representations are connected by a similarity transformation, then they are said to
be ‘equivalent’. From (B.15) it follows that when two representations are equivalent, then
χ′(Gj) = χ(Gj) for j = 1, 2, ..., g.

Sometimes it is possible by means of a similarity transformation to bring all the elements
of a representation into a block-diagonal form. In other words it may be possible to bring
D′m′,m(Gj) into a form where the non-zero elements are confined blocks along the diagonal,
the blocks being the same for all the group elements. To express the same idea differently,
it is sometimes possible to go over by means of a similarity transformation from the original
basis set, Φ1, Φ2, ..., ΦM to a new basis set Φ′1, Φ′2, ..., Φ′M which can be divided into two
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Table A.1 Multiplication table for the group C3

E C3 C−1
3

E E C3 C−1
3

C3 C3 C−1
3 E

C−1
3 C−1

3 E C3

or more subsets, each of which mixes only with itself under the operations G1, G2,...,Gg.
A representation based on two or more subsets of basis functions which mix only with
themselves under the operations of the group is said to be ‘reduced’. Whenever it is possible
to bring a representation into a reduced form by means of a similarity transformation, it
is said to be ‘reducible’. Whenever this is not possible, the representation is said to be
‘irreducible’.
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Table A.2 Character table for the group C3

E C3 C−1
3

A 1 1 1

Γc 1 ei(2π/3) e−i(2π/3)

Γ∗c 1 e−i(2π/3) ei(2π/3)

B.5 The great orthogonality theorem

A unitary matrix is a matrix whose conjugate transpose (Hermitian adjoint) is equal to its
inverse. It is always possible, by means of a similarity transformation, to bring the matrix
representations of a finite group into unitary form. Now let Dα

n′,n(Gj) and Dβ
m′,m(Gj) be

two unitary irreducible representations of a finite group of order g. The great orthogonality
theorem, from which much of the power of group theory is derived, then states that

g∑

j=1

Dα∗
n′,n(Gj)D

β
m′,m(Gj) =

g

dα
δα,βδn′,m′δn,m (B.16)

where dα is the dimension of the matrices Dα
n′,n(Gj). The proof of the great orthogonality

theorem depends on Schur’s lemma, which states that if A is a matrix that commutes with
every matrix Dα

n′,n(Gj), j = 1, 2, ..., g in a unitary irreducible representation of a finite
group, then A must be a multiple of the unit matrix, i.e., if

AD(Gj)−D(Gj)A = 0, j = 1, 2, ..., g (B.17)

then

A ∼ I (B.18)

The proof of Schur’s lemma is as follows: If A commutes with Dα
n′,n(Gj), j = 1, 2, ..., g,

then so does its conjugate transpose A†. Therefore we can let A be Hermitian without loss
of generality, and we can diagonalize A by means of a unitary transformation:

UAU−1 = A(d) (B.19)
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where A(d) is diagonal. Then

U−1A(d)UD(Gj)−D(Gj)U
−1A(d)U = 0, j = 1, 2, ..., g (B.20)

Multiplying on the left by U and on the right by U−1 then yields

A(d)UD(Gj)U
−1 − UD(Gj)U

−1A(d) = 0, j = 1, 2, ..., g (B.21)

Thus we can write

A(d)D′(Gj)−D′(Gj)A
(d) = 0, j = 1, 2, ..., g (B.22)

where

D′(Gj) ≡ UD(Gj)U
−1 (B.23)

Since A(d) is diagonal we can write A
(d)
n′,n = A

(d)
n δn′,n. Thus with the indices written out,

(B.22) becomes:

∑

n′

(
A

(d)
n′ δn′′,n′D

′α
n′,n(Gj)−D′αn′′,n′(Gj)A

(d)
n δn′,n

)
= 0, j = 1, ..., g

(B.24)

from which it follows that

(
A

(d)
n′ − A(d)

n

)
D′αn′,n(Gj) = 0, j = 1, 2, ..., g (B.25)

Without loss of generality, we can choose U in such a way that repeated eigenvalues of A(d)

are grouped together along the diagonal. Then A
(d)
n′′ 6= A

(d)
n implies that

D′αn′,n(Gj) = D′†αn′,n(Gj) = D′αn,n′(G
−1
j ) = 0, j = 1, 2, ..., g (B.26)

Thus D′αn′,n(Gj) can only have non-zero elements in the blocks that correspond to repeated

eigenvalues of A(d) and it would therefore be reducible unless all of the eigenvalues are
equal, which would contradict the original assumption of irreducibility. This proves Schur’s
lemma.

Having demonstrated the validity of Schur’s lemma, we are now in a position to prove
the great orthogonality relation. To do so we define the matrix M by the relationship

M ≡
g∑

j=1

Dα(Gj)XD
β(G−1

j ) (B.27)
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where X is an arbitrary matrix of appropriate dimensions to make matrix multiplication
possible and where Dα(Gj) and Dβ(Gj) are unitary irreducible representations of the finite
group. Then

Dα(Gi)MDβ(G−1
i ) =

g∑

j=1

Dα(Gi)D
α(Gj)XD

β(G−1
j )Dβ(G−1

i )

=

g∑

k=1

Dα(Gk)XD
β(G−1

k ) = M (B.28)

where GiGj = Gk and where we have used the fact that each group element appears once
and only once in every row of the multiplication table to replace the sum over j by a sum
over k. Multiplying (B.28) from the right by Dβ(Gi) we obtain:

Dα(Gi)M = MDβ(Gi) i = 1, 2, ..., g (B.29)

Then, according to Schur’s lemma, M must be a multiple of the unit matrix. It may of
course be a square matrix consisting entirely of zeros, since such a matrix is also a multiple
of the unit matrix. Multiplying (B.29) from the left by M−1 we obtain:

M−1Dα(Gi)M = Dβ(Gi) i = 1, 2, ..., g (B.30)

from which we can see that if M is not the null matrix, then the irreducible representations
Dα(Gi) and Dβ(Gi) must be the same, i.e., if M is not the null matrix, α = β.

Let us first consider the case where M is the null matrix and where α 6= β. Then
putting indices into (B.27) we have:

g∑

j=1

dα∑

n=1

dβ∑

m′=1

Dα
n′,n(Gj)Xn,m′D

β
m′,m(G−1

j ) = 0 (B.31)

But Xn,m′ is arbitrary, and therefore (B.31) can only hold for all cases if

g∑

j=1

Dα
n′,n(Gj)D

β
m′,m(G−1

j ) = 0 (B.32)

Now let us consider the second possibility: Suppose that α = β. Then

δα,βM =

g∑

j=1

Dβ(Gj)XD
β(G−1

j ) (B.33)

Putting indices into (B.33) we have

δα,βMn′,m =

g∑

j=1

dβ∑

n=1

dβ∑

m′=1

Dα
n′,n(Gj)Xn,m′D

β
m′,m(G−1

j ) (B.34)
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Taking the trace of both sides of (B.34) yields

δα,βtr(M) =

g∑

j=1

dβ∑

m=1

dβ∑

n=1

dβ∑

m′=1

Dβ
m,n(Gj)Xn,m′D

β
m′,m(G−1

j )

=

g∑

j=1

dβ∑

n=1

dβ∑

m′=1

δn,m′Xn,m′ = gtr(X) (B.35)

so that

Iδα,β
g

dα
trX =

g∑

j=1

dβ∑

n=1

dβ∑

m′=1

Dα
n′,n(Gj)Xn,m′D

β
m′,m(G−1

j ) (B.36)

where I is the identity matrix. Because X is arbitrary, this relationship can only hold in
all cases if (B.16) is valid.

The great orthogonality relation is very central, and almost all of the results of group
theory depend upon it. For example, combining (B.16) with the definition of characters
(B.14), we obtain:

g∑

j=1

χα∗(Gj)χ
β(Gj) ≡

g∑

j=1

{∑

n

Dα∗
n,n(Gj)

}{∑

m

Dβ
m,m(Gj)

}

=
g

dα
δα,β

∑

n

∑

m

δn,mδn,m = gδα,β (B.37)

Equation (B.37) holds only for unitary representations, but every representation is equiva-
lent to a unitary representation since it is always possible to perform a similarity transfor-
mation that orthonormalizes the basis functions. Therefore, since characters are invariant
under similarity transformations, the orthonormality of characters

1

g

g∑

j=1

χα∗(Gj)χ
β(Gj) = εα,β ≡

{
0 if the representations are inequivlent
1 if the representations are equivlent

(B.38)

holds even for non-unitary irreducible representations.
Now consider a representation Dn′,n(Gj) which may be reducible. If we reduce it by

means of a similarity transformation, then in its reduced form it will be block-diagonal,
each block being irreducible. Taking the trace, we find that the character of an element
in the reduced representation D′n′,n(Gj) is the sum of the characters of the irreducible
representations of which it is composed. Thus

χ(Gj) ≡
d∑

n=1

D′n,n(Gj)

= χ1(Gj) + χ2(Gj) + ...

=
∑

β

nβχ
β(Gj) (B.39)
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where nβ is the number of times that the irreducible representation Dβ occurs among the
diagonal blocks of D′. Then from (B.38) we have

1

g

g∑

j=1

χα∗(Gj)χ(Gj) =
∑

β

nβ

g∑

j=1

χα∗(Gj)χ
β(Gj)

=
∑

β

nβεα,β = nα (B.40)

This gives us a way to find out how many times a particular irreducible representation Dα

occurs in a reducible representation D. According to (B.40), we just have to take the scalar
product of the characters and divide by the order of the group. When we say that Dα

‘occurs’ nα times in D, we mean that it is possible by means of a similarity transformation
to bring D into block-diagonal form where Dα occurs nα times along the diagonal blocks.
The relationship is sometimes written in the form

D = n1D
1 + n1D

2 + ... (B.41)

Obviously in this decomposition we do not need to distinguish between different equivalent
forms of an irreducible representation Dα, since all of them have the same character, and
it is possible to go from one to another by means of a similarity transformation.

B.6 Classes

Two elements of a group Gi and Gj are said to be in the same ‘class’ if there exists another
element Gl in the group such that

Gi = G−1
l GjGl (B.42)

Thus, if we start with a particular element Gj, we can generate the set of elements in the
same class by keeping j fixed in (B.42) and letting Gl run through all the elements of the
group. It also follows from (B.42) that we can construct an operator Mk which commutes
with all the elements of the group by summing the elements of a particular class:

Mk ≡
∑

class k

Gj (B.43)

Then for an arbitrary group element Gl we have

G−1
l [Mk, Gl] =

∑

class k

G−1
l [Gj, Gl]

=
∑

class k

(
G−1
l GjGl −Gj

)

=
∑

class k

(Gi −Gj) = 0 (B.44)
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Equation (B.44) can hold only if [Mk, Gl] = 0. An operator, such as Mk, which commutes
with every element of the group is called an ‘invariant’. If there are r classes in a group,
there will be r linearly independent invariants that can be constructed in this way.

For any representation of two elements Gi and Gj in the same class, it follows from
(B.42) that

D(Gi) = D(G−1
l )D(Gj)D(Gl) = D(Gl)

−1D(Gj)D(Gl) (B.45)

Thus if D(Gi) and D(Gi) represent two elements in the same class, they are connected by a
similarity transformation, and therefore they have the same character. In other words, all
elements in the same class have the same character. This means that in applying equation
(B.40) we do not need to go through quite so much work. Instead of summing over all
of the elements in the group, we can take the product of characters for a representative
element in each class, multiply by the number of elements in the class, and then sum over
the classes. If gk represents the number of elements in the class k, then the orthogonality
relation for characters, equation (B.38), can be written in the form

r∑

k=1

√
gk
g
χα∗k (Gj)

√
gk
g
χβk(Gj) = δα,β (B.46)

where χαk is the character of a representative element in class k.

B.7 Projection operators

The great orthogonality theorem, equation (B.16), can be used to construct group-theoretical
projection operators. Suppose that the sets of functions (Φ1

1,Φ
1
2, ...,Φ

1
d1

), (Φ2
1,Φ

2
2, ...Φ

2
d2

),
etc. each form the basis for an irreducible representation of a group, and that there are r′

nonequivalent irreducible representations. Then

GjΦ
β
n =

dβ∑

n′=1

Φβ
n′D

β
n′,n(Gj) (B.47)

Then from (B.16) we have

g∑

j=1

Dα∗
m,m(Gj)GjΦ

β
n =

dβ∑

n′=1

Φβ
n′

g∑

j=1

Dα∗
m,m(Gj)D

β
n′,n(Gj)

= δα,β
g

dα

dβ∑

n′=1

Φβ
n′δm,n′δm,n

= δα,β
g

dα
Φβ
mδm,n (B.48)
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From (B.48) it follows that if we let

Pα
m ≡

dα
g

g∑

j=1

Dα∗
m,m(Gj)Gj (B.49)

then

Pα
mΦβ

n = δα,βδm,nΦβ
m (B.50)

In other words, when the operator Pα
m defined by equation (B.49) acts on any function in

the set (Φ1
1,Φ

1
2, ...,Φ

1
d1

), (Φ2
1,Φ

2
2, ...Φ

2
d2

),..., the function is given back unchanged, provided
that m = n and α = β. Otherwise the function is annihilated. Thus, Pα

m is a projection
operator corresponding to the mth basis function of the αth irreducible representation of
the group in a standard unitary representation. If Pα

m acts on an arbitrary function, it will
annihilate all of it except the component that transforms like the mth basis function of
Dα.

A second type of group-theoretical projection operator can be defined by the relation-
ship

Pα ≡
dα∑

m=1

Pα
m =

dα
g

g∑

j=1

dα∑

m=1

Dα∗
m,m(Gj)Gj (B.51)

which can be rewritten as

Pα ≡ dα
g

g∑

j=1

χα∗(Gj)Gj (B.52)

From (B.50) it follows that

PαΦβ
n =

dα∑

m=1

Pα
mΦβ

n = δα,β

dα∑

m=1

δm,nΦβ
m = δα,βΦβ

n (B.53)

When Pα acts on an arbitrary function, it annihilates everything except the component
which can be expressed as a linear combination of basis functions of the irreducible repre-
sentation Dα. If we sum (B.53) over all of the irreducible representations of the group, we
obtain

r′∑

α=1

PαΦβ
n =

r′∑

α=1

δα,βΦβ
n = Φβ

n (B.54)

Therefore the sum acts like the identity operator and we can write

r′∑

α=1

Pα = E (B.55)
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Combining (B.55) with (B.52), we obtain

g∑

j=1

r′∑

α=1

dα
g
χα∗(Gj)Gj = E ≡ G1 (B.56)

Since the group elements G1, ..., Gg are linearly independent, equation (B.55) implies that

r′∑

α=1

dα
g
χα∗(Gj) = δj,1 (B.57)

The character of the identity element in any representation is equal to the dimension of
that representation:

χα∗(E) = χα(E) = dα (B.58)

Therefore, when j = 1, we obtain from (B.57) the relationship

r′∑

α=1

d2
α = g (B.59)

i.e., the sum of the squares of the dimensions of the irreducible representations is equal to
the order of the group.

B.8 The regular representation

The ‘regular representation’ of a finite group is a reducible representation Dreg in which
the basis consists of the group elements themselves:

GjGn =

g∑

n′=1

Gn′D
reg
n′,n(Gj) (B.60)

Dreg must thus be a set of g g× g matrices. If we know the multiplication table for a finite
group, we can construct the regular representation. For example, the multiplication table
for the group C3 is shown above. It can easily be verified that if we let

Dreg(E) =




1 0 0
0 1 0
0 0 1




Dreg(C3) =




0 0 1
1 0 0
0 1 0


 (B.61)

Dreg(C−1
3 ) =




0 1 0
0 0 1
1 0 0
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then the matrices will be the regular representation of the group C3 according to the
definition shown in (B.60) and the multiplication table (A.1). Since GiGj 6= Gj for Gi 6= E,
it follows that the character of every group element except the identity element vanishes
in the regular representation. (We can notice that this holds in the example given above.)
Therefore in the case of the regular representation, equation (B.40) becomes:

nα =
1

g

g∑

j=1

χα∗(Gj)χ
reg(Gj) =

1

g
χα∗(E)χreg(E) = dα (B.62)

Thus each irreducible representation of a finite group appears dα times in the regular
representation.

When each element of a group commutes with every other one, a group is said to be
Abelian. Then from the definition of classes, (B.42), it follows that in an Abelian group,
every element is in a class by itself, so that an Abelian group contains g classes, i.e. r = g.
We can next ask how many non-equivalent irreducible representations an Abelian group
contains. To answer this question, we remember from Schur’s lemma that the only matrix
that commutes with every matrix in an irreducible representation of a group must be a
multiple of the unit matrix. But in an Abelian group, all of the elements commute with
each other, and therefore their irreducible representations must all be multiples of the
unit matrix. This can happen only if all the irreducible representations are 1-dimensional.
Thus for an Abelian group, dα = 1, α = 1, 2, ..., r′ and r′ = g. It can be seen from
the multiplication table of the group C3 that it is Abelian. In the example of C3, (B.59)
becomes 1 + 1 + 1 = 3.

B.9 Classification of basis functions

We can us the group-theoretical projection operators to classify basis sets into basis func-
tions for the various irreducible representations of a group. For example, we can construct
the projection operators of the group C3 from the character table:

P 1 =
1

3

(
E + C3 + C−1

3

)

P 2 =
1

3

(
E + e−i2π/3C3 + ei2π/3C−1

3

)
(B.63)

P 3 =
1

3

(
E + ei2π/3C3 + e−i2π/3C−1

3

)

Since the group C3 is Abelian, all of its irreducible representations are 1-dimensional, and
hence there is no difference between projection operators of the type Pα and those of
the type Pα

n . Notice that P 1 + P 2 + P 3 = E in accordance with (B.55), and that the
projection operators are idempotent, i.e., PαP β = δα,βP

α. All projection operators must
be idempotent, since projecting out a subspace of a Hilbert space twice has the same
effect as doing it once, and acting in succession with projection operators corresponding
to different subspaces must yield zero.
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Now consider the set of functions Φm = eimϕ where m is an integer. We can use the
projection operators of (B.63) to split the Hilbert space spanned by this set of functions
into three subspaces. Using the relationships

Eeimϕ = eimϕ

C3e
imϕ = eim(ϕ−2π/3) (B.64)

C−1
3 eimϕ = eim(ϕ+2π/3)

we obtain

P 1eimϕ =
1

3
eimϕ

(
1 + e−im2π/3 + eim2π/3

)

=

{
0 if m = ±1,±2,±4,±5, ...
eimϕ if m = 0,±3,±6,±9, ...

(B.65)

and similarly

P 2eimϕ =

{
0 if m+ 1 = ±1,±2,±4,±5, ...
eimϕ if m+ 1 = 0,±3,±6,±9, ...

P 3eimϕ =

{
0 if m− 1 = ±1,±2,±4,±5, ...
eimϕ if m− 1 = 0,±3,±6,±9, ...

(B.66)

Thus the Hilbert space spanned by the functions Φm = eimϕ is divided into three subspaces
each of which consists of basis functions for one of the irreducible representations of C3. For
non-Abelian groups the Hilbert space spanned by a set of basis functions can be divided
into still smaller subspaces through the use of projection operators of the type Pα

n defined
in equation (B.49). If we wish to have names for the the two types of projection operators,
we might call Pα

m ‘strong’ and Pα ‘weak’, since Pα
n has a stronger effect than Pα.

Now suppose that we have divided the Hilbert space spanned by a set of basis functions
into small subspaces by means of the strong projection operators Pα

n , so that

Pα
n Φj = pjΦj pj = 0 or 1 (B.67)

We will now show that if an operator T commutes with every element of the group, then
the matrix elements of T linking functions belonging to different subspaces must necessarily
vanish. The proof is as follows: Since T commutes with every element of the group, and
since the projection operators are constructed from group elements, we have

[Pα
n , T ] = 0 (B.68)

Then

〈Φj| [Pα
n , T ] |Φk〉 = (pj − pk)〈Φj|T |Φk〉 = 0 (B.69)

Thus if Φj and Φk belong to different subspaces when the basis set is classified by the
action of the projection operators Pα

n , i.e., if pj 6= pk, then 〈Φj|T |Φk〉 = 0. It follows that
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a matrix representation of the operator T will be block-diagonal if it is based on functions
that have been classified by means of the projection operators Pα

n , i.e. if it is based on a
set of functions that satisfy (B.67). Such a basis set is said to be ‘symmetry-adapted’.

We can introduce a special notation to represent fully symmetry-adapted basis func-
tions. Let |ηα,nj 〉 be such a function.2 By this we indicate that the function transforms
under the action of the group elements like nth basis function of the αth standard irre-
ducible representation of the group, while the index j distinguishes between the various
linearly independent functions that have this property. With this notation we can write:

Pα
n |ηβ,mj 〉 = δα,βδn,m|ηβ,mj 〉 (B.70)

Using this notation, the statement that a matrix representation of the operator T based
on symmetry-adapted functions will be block-diagonal can be written in the form:

〈ηα,ni |T |ηβ,mj 〉 = δα,βδn,m〈ηα,ni |T |ηβ,mj 〉 (B.71)

The eigenvalues and eigenfunctions of T can also be expressed in this notation:

T |Ψα,m
κ 〉 = λα,mκ |Ψα,m

κ 〉 (B.72)

where

|Ψα,m
κ 〉 =

∑

j

|ηα,mj 〉Cj,κ (B.73)

In other words, a set of functions all of which transform like the nth basis function of the
αth irreducible representation of a group combine to form an eigenfunction of an operator
T that commutes with all of the group elements.

We will now try to find a relationship between the degeneracy of the root λα,nκ and
the dimension dα of the irreducible representation Dα. To do this, we introduce the ‘shift
operator’

Pα
m′,m ≡

dα
g

g∑

j=1

Dα∗
m′,m(Gj)Gj m′ 6= m (B.74)

Then by an argument similar to (B.48) we have

Pα
m′,m|ηα,mj 〉 =

dα
g

g∑

j=1

Dα∗
m′,m(Gj)Gj|ηα,mj 〉

=
dα∑

m′′=1

|ηα,m′′j 〉dα
g

g∑

j=1

Dα∗
m′,m(Gj)D

α
m′′,m(Gj)

=
dα∑

m′′=1

|ηα,m′′j 〉δm′′,m′ = |ηα,m′j 〉 (B.75)

2We also introduce the Dirac notation here, since it is useful in the discussion of matrix elements.



B.9. CLASSIFICATION OF BASIS FUNCTIONS 255

where we have made use of the great orthogonality relation (B.16). Since Pα
m′,m is a linear

combination of group elements, it must commute with T :

[
Pα
m′,m, T

]
= 0 (B.76)

Therefore

〈Ψα,m′

κ |
[
Pα
m′,m, T

]
|Ψα,m

κ 〉 =
(
λα,m

′

κ − λα,mκ
)
〈Ψα,m′

κ |Pα
m′,m|Ψα,m

κ 〉

=
(
λα,m

′

κ − λα,mκ
)

= 0 (B.77)

so that the roots corresponding to the dα eigenfunctions |Ψα,1
κ 〉, ..., |Ψα,dα

κ 〉 must be degen-
erate. Such a degeneracy is called a ‘due degeneracy’ because it is due to the symmetry
properties of the system. If there are other degeneracies, they are termed ‘accidental’.
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Appendix C

NON-EUCLIDIAN GEOMETRY

C.1 Albert Einstein and non-Euclidian geometry

Albert Einstein’s famous general theory of relativity has a central place in modern cosmol-
ogy. We will seebelow how Einstein, with the help of his friend Marcel Grossman, game
to realize that non-Euclidian geometry wasexactly what he needed to turn his principle of
the equivalence of gravitational and inertial mass into a quantitative theory.

C.2 Family background

Albert Einstein was born in Ulm, Germany, in 1879. He was the son of middle-class,
irreligious Jewish parents, who sent him to a Catholic school. Einstein was slow in learning
to speak, and at first his parents feared that he might be retarded; but by the time he was
eight, his grandfather could say in a letter: “Dear Albert has been back in school for a
week. I just love that boy, because you cannot imagine how good and intelligent he has
become.”

Remembering his boyhood, Einstein himself later wrote: “When I was 12, a little book
dealing with Euclidean plane geometry came into my hands at the beginning of the school
year. Here were assertions, as for example the intersection of the altitudes of a triangle in
one point, which, though by no means self-evident, could nevertheless be proved with such
certainty that any doubt appeared to be out of the question. The lucidity and certainty
made an indescribable impression on me.”

When Albert Einstein was in his teens, the factory owned by his father and uncle began
to encounter hard times. The two Einstein families moved to Italy, leaving Albert alone
and miserable in Munich, where he was supposed to finish his course at the gymnasium.
Einstein’s classmates had given him the nickname “Beidermeier”, which means something
like “Honest John”; and his tactlessness in criticizing authority soon got him into trouble.
In Einstein’s words, what happened next was the following: “When I was in the seventh
grade at the Lutpold Gymnasium, I was summoned by my home-room teacher, who ex-
pressed the wish that I leave the school. To my remark that I had done nothing wrong, he
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replied only, ‘Your mere presence spoils the respect of the class for me’.”
Einstein left gymnasium without graduating, and followed his parents to Italy, where

he spent a joyous and carefree year. He also decided to change his citizenship. “The
over-emphasized military mentality of the German State was alien to me, even as a boy”,
Einstein wrote later. “When my father moved to Italy, he took steps, at my request, to
have me released from German citizenship, because I wanted to be a Swiss citizen.”

The financial circumstances of the Einstein family were now precarious, and it was clear
that Albert would have to think seriously about a practical career. In 1896, he entered
the famous Zürich Polytechnic Institute with the intention of becoming a teacher of math-
ematics and physics. However, his undisciplined and nonconformist attitudes again got
him into trouble. His mathematics professor, Hermann Minkowski (1864-1909), considered
Einstein to be a “lazy dog”; and his physics professor, Heinrich Weber, who originally had
gone out of his way to help Einstein, said to him in anger and exasperation: “You’re a
clever fellow, but you have one fault: You won’t let anyone tell you a thing! You won’t let
anyone tell you a thing!”

Einstein missed most of his classes, and read only the subjects which interested him. He
was interested most of all in Maxwell’s theory of electro-magnetism, a subject which was
too “modern” for Weber. There were two major examinations at the Zürich Polytechnic
Institute, and Einstein would certainly have failed them had it not been for the help of his
loyal friend, the mathematician Marcel Grossman.

Grossman was an excellent and conscientious student, who attended every class and
took meticulous notes. With the help of these notes, Einstein managed to pass his ex-
aminations; but because he had alienated Weber and the other professors who could have
helped him, he found himself completely unable to get a job. In a letter to Professor F.
Ostwald on behalf of his son, Einstein’s father wrote: “My son is profoundly unhappy
because of his present joblessness; and every day the idea becomes more firmly implanted
in his mind that he is a failure, and will not be able to find the way back again.”

From this painful situation, Einstein was rescued (again!) by his friend Marcel Gross-
man, whose influential father obtained for Einstein a position at the Swiss Patent Office:
Technical Expert (Third Class). Anchored at last in a safe, though humble, position, Ein-
stein married one of his classmates. He learned to do his work at the Patent Office very
efficiently; and he used the remainder of his time on his own calculations, hiding them
guiltily in a drawer when footsteps approached.

In 1905, this Technical Expert (Third Class) astonished the world of science with five
papers, written within a few weeks of each other, and published in the Annalen der Physik.
Of these five papers, three were classics: One of these was the paper in which Einstein ap-
plied Planck’s quantum hypothesis to the photoelectric effect. The second paper discussed
“Brownian motion”, the zig-zag motion of small particles suspended in a liquid and hit
randomly by the molecules of the liquid. This paper supplied a direct proof of the validity
of atomic ideas and of Boltzmann’s kinetic theory. The third paper was destined to estab-
lish Einstein’s reputation as one of the greatest physicists of all time. It was entitled “On
the Electrodynamics of Moving Bodies”, and in this paper, Albert Einstein formulated his
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special theory of relativity. Essentially, this theory maintained that all of the fundamental
laws of nature exhibit a symmetry with respect to rotations in a 4-dimensional space-time
continuum.

C.3 Special relativity theory

The theory of relativity grew out of problems connected with Maxwell’s electromagnetic
theory of light. Ever since the wavelike nature of light had first been demonstrated, it had
been supposed that there must be some medium to carry the light waves, just as there must
be some medium (for example air) to carry sound waves. A word was even invented for the
medium which was supposed to carry electromagnetic waves: It was called the “ether”.

By analogy with sound, it was believed that the velocity of light would depend on
the velocity of the observer relative to the “ether”. However, all attempts to measure
differences in the velocity of light in different directions had failed, including an especially
sensitive experiment which was performed in America in 1887 by A.A. Michelson and E.W.
Morley.

Even if the earth had, by a coincidence, been stationary with respect to the “ether”
when Michelson and Morley first performed their experiment, they should have found an
“ether wind” when they repeated their experiment half a year later, with the earth at the
other side of its orbit. Strangely, the observed velocity of light seemed to be completely
independent of the motion of the observer!

In his famous 1905 paper on relativity, Einstein made the negative result of the Michelson-
Morley experiment the basis of a far-reaching principle: He asserted that no experiment
whatever can tell us whether we are at rest or whether we are in a state of uniform motion.
With this assumption, the Michelson-Morley experiment of course had to fail, and the
measured velocity of light had to be independent of the motion of the observer.

Einstein’s Principle of Special Relativity had other extremely important consequences:
He soon saw that if his principle were to hold, then Newtonian mechanics would have to be
modified. In fact, Einstein’s Principle of Special Relativity required that all fundamental
physical laws exhibit a symmetry between space and time. The three space dimensions,
and a fourth dimension, ict, had to enter every fundamental physical law in a symmetrical
way. (Here i is the square root of -1, c is the velocity of light, and t is time.)

When this symmetry requirement is fulfilled, a physical law is said to be “Lorentz-
invariant” (in honor of the Dutch physicist H.A. Lorentz, who anticipated some of Ein-
stein’s ideas). Today, we would express Einstein’s principle by saying that every funda-
mental physical law must be Lorentz-invariant (i.e. symmetrical in the space and time
coordinates). The law will then be independent of the motion of the observer, provided
that the observer is moving uniformly.

Einstein was able to show that, when properly expressed, Maxwell’s equations are
already Lorentz-invariant; but Newton’s equations of motion have to be modified. When
the needed modifications are made, Einstein found, then the mass of a moving particle
appears to increase as it is accelerated. A particle can never be accelerated to a velocity
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greater than the velocity of light; it merely becomes heavier and heavier, the added energy
being converted into mass.

From his 1905 theory, Einstein deduced his famous formula equating the energy of a
system to its mass multiplied by the square of the velocity of light. As we shall see, his
formula was soon used to explain the source of the energy produced by decaying uranium
and radium; and eventually it led to the construction of the atomic bomb. Thus Einstein,
a lifelong pacifist, who renounced his German citizenship as a protest against militarism,
became instrumental in the construction of the most destructive weapon ever invented - a
weapon which casts an ominous shadow over the future of humankind.

Just as Einstein was one of the first to take Planck’s quantum hypothesis seriously, so
Planck was one of the first physicists to take Einstein’s relativity seriously. Another early
enthusiast for relativity was Hermann Minkowski, Einstein’s former professor of mathe-
matics. Although he once had characterized Einstein as a “lazy dog”, Minkowski now
contributed importantly to the mathematical formalism of Einstein’s theory; and in 1907,
he published the first book on relativity. In honor of Minkowski’s contributions to relativity,
the 4-dimensional space-time continuum in which we live is sometimes called “Minkowski
space”.

In 1908, Minkowski began a lecture to the Eightieth Congress of German Scientists and
Physicians with the following words:

“ From now on, space by itself, and time by itself, are destined to sink completely into
the shadows; and only a kind of union of both will retain an independent existence.”

Gradually, the importance of Einstein’s work began to be realized, and he was much
sought after. He was first made Assistant Professor at the University of Zürich, then full
Professor in Prague, then Professor at the Zürich Polytechnic Institute; and finally, in
1913, Planck and Nernst persuaded Einstein to become Director of Scientific Research at
the Kaiser Wilhelm Institute in Berlin. He was at this post when the First World War
broke out

While many other German intellectuals produced manifestos justifying Germany’s in-
vasion of Belgium, Einstein dared to write and sign an anti-war manifesto. Einstein’s
manifesto appealed for cooperation and understanding among the scholars of Europe for
the sake of the future; and it proposed the eventual establishment of a League of Euro-
peans. During the war, Einstein remained in Berlin, doing whatever he could for the cause
of peace, burying himself unhappily in his work, and trying to forget the agony of Europe,
whose civilization was dying in a rain of shells, machine-gun bullets, and poison gas.

C.4 General relativity

The work into which Einstein threw himself during this period was an extension of his
theory of relativity. He already had modified Newton’s equations of motion so that they
exhibited the space-time symmetry required by his Principle of Special Relativity. However,
Newton’s law of gravitation. remained a problem.

Obviously it had to be modified, since it disagreed with his Special Theory of Relativity;
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but how should it be changed? What principles could Einstein use in his search for a more
correct law of gravitation? Certainly whatever new law he found would have to give results
very close to Newton’s law, since Newton’s theory could predict the motions of the planets
with almost perfect accuracy. This was the deep problem with which he struggled.

In 1907, Einstein had found one of the principles which was to guide him, the Principle
of Equivalence of inertial and gravitational mass. After turning Newton’s theory over and
over in his mind, Einstein realized that Newton had used mass in two distinct ways: His
laws of motion stated that the force acting on a body is equal to the mass of the body
multiplied by its acceleration; but according to Newton, the gravitational force on a body
is also proportional to its mass. In Newton’s theory, gravitational mass, by a coincidence,
is equal to inertial mass; and this holds for all bodies. Einstein decided to construct a
theory in which gravitational and inertial mass necessarily have to be the same.

He then imagined an experimenter inside a box, unable to see anything outside it. If
the box is on the surface of the earth, the person inside it will feel the pull of the earth’s
gravitational field. If the experimenter drops an object, it will fall to the floor with an
acceleration of 32 feet per second per second. Now suppose that the box is taken out into
empty space, far away from strong gravitational fields, and accelerated by exactly 32 feet
per second per second. Will the enclosed experimenter be able to tell the difference between
these two situations? Certainly no difference can be detected by dropping an object, since
in the accelerated box, the object will fall to the floor in exactly the same way as before.

With this “thought experiment” in mind, Einstein formulated a general Principle of
Equivalence: He asserted that no experiment whatever can tell an observer enclosed in a
small box whether the box is being accelerated, or whether it is in a gravitational field.
According to this principle, gravitation and acceleration are locally equivalent, or, to say
the same thing in different words, gravitational mass and inertial mass are equivalent.

Einstein soon realized that his Principle of Equivalence implied that a ray of light must
be bent by a gravitational field. This conclusion followed because, to an observer in an
accelerated frame, a light beam which would appear straight to a stationary observer, must
necessarily appear very slightly curved. If the Principle of Equivalence held, then the same
slight bending of the light ray would be observed by an experimenter in a stationary frame
in a gravitational field.

Another consequence of the Principle of Equivalence was that a light wave propagating
upwards in a gravitational field should be very slightly shifted to the red. This followed
because in an accelerated frame, the wave crests would be slightly farther apart than they
normally would be, and the same must then be true for a stationary frame in a gravitational
field. It seemed to Einstein that it ought to be possible to test experimentally both the
gravitational bending of a light ray and the gravitational red shift.

This seemed promising; but how was Einstein to proceed from the Principle of Equiva-
lence to a formulation of the law of gravitation? Perhaps the theory ought to be modeled
after Maxwell’s electromagnetic theory, which was a field theory, rather than an “action at
a distance” theory. Part of the trouble with Newton’s law of gravitation was that it allowed
a signal to be propagated instantaneously, contrary to the Principle of Special Relativity.
A field theory of gravitation might cure this defect, but how was Einstein to find such a
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theory? There seemed to be no way.
From these troubles Albert Einstein was rescued (a third time!) by his staunch friend

Marcel Grossman. By this time, Grossman had become a professor of mathematics in
Zürich, after having written a doctoral dissertation on tensor analysis and non-Euclidean
geometry, the very things that Einstein needed. The year was then 1912, and Einstein had
just returned to Zürich as Professor of Physics at the Polytechnic Institute. For two years,
Einstein and Grossman worked together; and by the time Einstein left for Berlin in 1914,
the way was clear. With Grossman’s help, Einstein saw that the gravitational field could
be expressed as a curvature of the 4-dimensional space-time continuum.

In 1919, a British expedition, headed by Sir Arthur Eddington, sailed to a small island
off the coast of West Africa. Their purpose was to test Einstein’s prediction of the bending
of light in a gravitational field by observing stars close to the sun during a total eclipse.
The observed bending agreed exactly with Einstein’s predictions; and as a result he became
world-famous. The general public was fascinated by relativity, in spite of the abstruseness
of the theory (or perhaps because of it). Einstein, the absent-minded professor, with long,
uncombed hair, became a symbol of science. The world was tired of war, and wanted
something else to think about.

Einstein met President Harding, Winston Churchill and Charlie Chaplin; and he was
invited to lunch by the Archbishop of Canterbury. Although adulated elsewhere, he was
soon attacked in Germany. Many Germans, looking for an excuse for the defeat of their
nation, blamed it on the pacifists and Jews; and Einstein was both these things.

C.5 Metric tensors

Let us consider a coordinate system x1, x2, · · · , xd labelling the points in a d-dimensional
space. We can label the points in a different way by going to a new coordinate system
X1, X2, · · · , Xd where the new coordinates are expressed as functions of the old ones.

X1 = X1(x1, x2, · · · , xd)
X2 = X2(x1, x2, · · · , xd)

...
...

...

Xd = Xd(x1, x2, · · · , xd) (C.1)

For example, (C.1) might represent a transformation from Cartesian coordinates to spher-
ical polar coordinates. If we have an equation written in terms of the old coordinates, we
might ask how to rewrite it in terms of the new ones. More generally, we can try to write
a physical equation in such a way that it will look the same in every coordinate system.
Suppose that the space is Euclidean (flat), so that in terms of the Cartesian coordinates
x1, x2, · · · , xd, the infinitesimal element of length separating two points is given by the
Pythagorean rule:

ds2 = δi,jdx
idxj ≡ gi,jdx

idxj (C.2)
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(In equation (C.2) and in the remainder of this section, we use the Einstein convention,
in which a sum over repeated indices is understood, although not written explicitly.) The
symbol gi,j which appears in the definition of the infinitesimal length ds2 is called the
covariant metric tensor, and for Cartesian coordinates in a Euclidean space, it is just the
Kronecker delta function. Using the identity

dxi =
∂xi

∂Xµ
dXµ (C.3)

we can rewrite (C.2) as

ds2 = δi,j
∂xi

∂Xµ

∂xj

∂Xν
dXµdXν ≡ Gµ,νdX

µdXν (C.4)

where

Gµ,ν ≡ gi,j
∂xi

∂Xµ

∂xj

∂Xν
(C.5)

The quantity Gµ,ν which appears in equations (C.4) and (C.5) is the covariant metric tensor
in the new coordinate system. In any space, whether Euclidean or not, the covariant metric
tensor is defined by the expression which yields ds2, the square of the infinitesimal distance
between two points, as in equation (C.2) or (C.4). The word tensor refers to the way in
which a quantity transforms under changes in the coordinate system. The rank of a tensor
is the number of indices. The covariant metric tensor is the prototype of a covariant tensor
of second rank. Any physical quantity which must be transformed according to the rule

Aµ,ν = ai,j
∂xi

∂Xµ

∂xj

∂Xν
(C.6)

under the coordinate transformation x1, x2, · · · , xd → X1, X2, · · · , Xd is said to be a co-
variant tensor of second rank. The d-component entity

dXµ =
∂Xµ

∂xi
dxi (C.7)

is the prototype of a contravariant tensor of first rank. Any quantity that transforms
according to the rule

Aµ =
∂Xµ

∂xi
ai (C.8)

is said to be a contravariant tensor of first rank (or contravariant vector). The distance
element ds is the prototype of an invariant or scalar. Any quantity φ which is invariant
under coordinate transformations is said to be a scalar. The gradient of a scalar

∂φ

∂Xµ
=

∂xi

∂Xµ

∂φ

∂xi
(C.9)
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is the prototype of a covariant tensor of first rank, or covariant vector. Any quantity which
transforms according to the rule

Aµ =
∂xi

∂Xµ
ai (C.10)

is said to be a covariant vector. We can also define tensors of higher rank. For example,

Aµνσ =
∂Xµ

∂xi
∂Xν

∂xj
∂Xσ

∂xk
aijk (C.11)

is said to be a contravariant tensor of third rank. A covariant vector and a contravariant
vector can be contracted into a scalar:

AµB
µ =

∂xi

∂Xµ

∂Xµ

∂xj
aib

j = δijaib
j = aib

i (C.12)

Similarly, if we contract a contravariant vector with the covariant metric tensor, we obtain
a covariant vector:

GµνA
ν = Aµ

gija
i = ai (C.13)

It is useful to define a quantity called the contravariant metric tensor, which gives the
Kronecker δ-function when it is contracted with the covariant metric tensor:

GµνGνσ = δµσ
gijgjk = δik

Gµν =
∂Xµ

∂xi
∂Xν

∂xj
gij (C.14)

If we contract a covariant vector with the contravariant metric tensor, we obtain a con-
travariant vector:

GµνAν = Aµ (C.15)

In a similar way, we can raise or lower the indices of a tensor of higher rank. For example,
it is easy to show that

GµνA
νσρ = Aσρµ (C.16)

In a Cartesian coordinate system with unit metric we are accustomed to writing the
volume element as

dv = dx1dx2 · · · dxd (C.17)

This is obviously unsatisfactory from the standpoint of tensor analysis, since the right-
hand side of equation (C.17) appears to be a contravariant tensor of rank d (or rather a
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particular component of such a tensor), while the left-hand side has no indices at all. In
order to write the volume element in an invariant way, the Italian mathematician Tulio
Levi-Civita (1873-1941) introduced a totally antisymmetric covariant tensor of rank d. In
a Cartesian coordinate system, for a flat space, the Levi-Civita tensor is given by

eijkl··· =





(−1)σ if ijkl · · · = σ(1234 · · · )

0 otherwise
(C.18)

In other words, the Levi-Civita tensor is ±1 if ijkl · · · is a permutation of 1234· · · , with
the sign depending on whether the permutation is even or odd, and it is zero otherwise.
In terms of this tensor, the volume element of equation (C.17) becomes

dv =
1

d!
eijkl···dx

idxjdxkdxl · · · (C.19)

while in a transformed coordinate system it is

dV =
1

d!
Eµνσρ···dX

µdXνdXσdXρ · · · (C.20)

where

Eµνσ··· = eijk···
∂xi

∂Xµ

∂xj

∂Xν

∂xk

∂Xσ
· · · (C.21)

In this way, Levi-Civita used the formalism of tensor calculus to re-derive the previous
result of the German mathematician Carl Gustav Jacobi (1804-1851), who had shown that
in a curvilinear coordinate system, the volume element is given by

dV =

∣∣∣∣
∂xi

∂Xµ

∣∣∣∣ dX1dX2 · · · dXd (C.22)

where |∂xi/∂Xµ| is the determinant of the d×d square matrix of transformation coefficients
from Cartesian coordinates to curvilinear coordinates. This determinant is called the
Jacobian of the transformation. From the relationship

Gµ,ν =
∂xi

∂Xµ
δij

∂xj

∂Xν
(C.23)

one can show that the Jacobian

√
|Gµν | ≡

∣∣∣∣
∂xi

∂Xµ

∣∣∣∣ ≡
√
|G| (C.24)

is the square root of the determinant of the covariant metric tensor. The Jacobian is
usually represented by the symbol

√
|G|. Levi-Civita’s book Absolute Differential Calculus

has been translated into many languages. It is still in print, and it remains one of the
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best textbooks in the field, along with Schrödinger’s Space-Time Structure, Brillouin’s Les
Tenseurs and Landau and Lifshitz’s The Classical Theory of Fields.

The Jacobian,
√
|G|, is the prototype of a scalar density. We can construct tensor

densities by multiplying tensors by the Jacobian appropriate for the coordinate system.
When a tensor density is transformed to another coordinate system, the Jacobian has to
be recalculated from the transformed covariant metric tensor. Tensor capacities can be
constructed by dividing tensors by the Jacobian. Now consider a scalar function ψ. Its
gradient is a covariant vector, and therefore

Gµν ∂ψ

∂Xµ

∂ψ

∂Xν
= scalar (C.25)

It follows that if we let

L =
√
|G|
[
Gµν ∂ψ

∂Xµ

∂ψ

∂Xν
+ κψ2

]
(C.26)

where κ is a constant, then the variational principle

δ

∫ ∫
· · ·
∫
L dX1dX2 · · · dXd = 0 (C.27)

will be invariant under a curvilinear coordinate transformation. As we saw above, the
Euler-Lagrange equations that follow from this variational principle are

∂

∂Xµ

∂L
∂ (∂ψ/∂Xµ)

− ∂L
∂ψ

= 0 (C.28)

With the Lagrangian density of equation (C.26), this becomes

1√
|G|

∂

∂Xµ

√
|G| Gµν ∂ψ

∂Xν
= κ ψ (C.29)

C.6 The Laplace-Beltrami operator

The operator

∆ =
d∑

µ=1

d∑

ν=1

1√
|G|

∂

∂Xµ

√
|G| Gµν ∂

∂Xν
(C.30)

is the generalized Laplacian operator, which plays such an important role in the theory of
hyperspherical harmonics, but here it is written in a form due to Eugenio Beltrami (1835-
1899), which is invariant under coordinate transformations. (In equation (C.29), we have
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abandoned the Einstein convention, and have re-introduced explicit sums.) To illustrate
this equation, let us consider some examples. In a d-dimensional space, we can let

x1 = r sin θ1 sin θ2... sin θd−2 cos θd−1

x2 = r sin θ1 sin θ2... sin θd−2 sin θd−1

x3 = r sin θ1 sin θ2... cos θd−2

...
...

...

xd−1 = r sin θ1 cos θ2

xd = r cos θ1 (C.31)

while

X1 = r

X2 = θ1

X3 = θ2

...
...

...

Xd−1 = θd−2

Xd = θd−1 (C.32)

Then the Jacobians for various values of d are

d = 3
√
|G| = r2 sin θ1

d = 4
√
|G| = r3 sin2 θ1 sin θ2

d = 5
√
|G| = r4 sin3 θ1 sin2 θ2 sin θ3

d = 6
√
|G| = r5 sin4 θ1 sin3 θ2 sin2 θ3 sin θ4

...
...

...

d = d
√
|G| = rd−1 sind−2 θ1 sind−3 θ2... sin

2 θd−3 sin θd−2 (C.33)

The covariant metric tensor for d = 3 is

Gµ,ν =




1 0 0
0 r2 0
0 0 r2 sin2 θ1


 (C.34)

while for d = 4

Gµ,ν =




1 0 0 0
0 r2 0 0
0 0 r2 sin2 θ1 0
0 0 0 r2 sin2 θ1 sin2 θ2


 (C.35)
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for d = 5

Gµ,ν =




1 0 0 0 0
0 r2 0 0 0
0 0 r2 sin2 θ1 0 0
0 0 0 r2 sin2 θ1 sin2 θ2 0
0 0 0 0 r2 sin2 θ1 sin2 θ2 sin2 θ3




(C.36)

The contravariant metric tensors are just their reciprocals.

Gµ,ν =




1 0 0

0
1

r2
0

0 0
1

r2 sin2 θ1


 (C.37)

Gµ,ν =




1 0 0 0

0
1

r2
0 0

0 0
1

r2 sin2 θ1

0

0 0 0
1

r2 sin2 θ1 sin2 θ2




(C.38)

Gµ,ν =




1 0 0 0 0

0
1

r2
0 0 0

0 0
1

r2 sin2 θ1

0 0

0 0 0
1

r2 sin2 θ1 sin2 θ2

0

0 0 0 0
1

r2 sin2 θ1 sin2 θ2 sin2 θ3




(C.39)

and so on. Combining these results, we obtain the Laplace-Beltrami operators:

∑

ν

Gµ,ν ∂

∂Xν

=

(
∂

∂r
,

1

r2

∂

∂θ1

,
1

r2 sin2 θ1

∂

∂θ2

,
1

r2 sin2 θ1 sin2 θ2

∂

∂θ3

, ...

)
(C.40)

For d = 3,

3∑

ν=1

√
|G| Gµ,ν ∂

∂Xν

= r2 sin θ1

(
∂

∂r
,

1

r2

∂

∂θ1

,
1

r2 sin2 θ1

∂

∂θ2

)
(C.41)
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3∑

µ=1

3∑

ν=1

1√
|G|

∂

∂Xµ

√
|G| Gµ,ν ∂

∂Xν

=
1

r2

∂

∂r
r2 ∂

∂r
+

1

r2 sin θ1

∂

∂θ1

sin θ1
∂

∂θ1

+
1

r2 sin2 θ1

∂2

∂θ2
2

(C.42)

For d = 4,

4∑

ν=1

√
|G| Gµ,ν ∂

∂Xν

= r3 sin2 θ1 sin θ2

(
∂

∂r
,

1

r2

∂

∂θ1

,
1

r2 sin2 θ1

∂

∂θ2

,
1

r2 sin2 θ1 sin2 θ2

∂

∂θ3

)

(C.43)

4∑

µ=1

4∑

ν=1

1√
|G|

∂

∂Xµ

√
|G| Gµ,ν ∂

∂Xν

=
1

r3

∂

∂r
r3 ∂

∂r
+

1

r2 sin2 θ1

∂

∂θ1

sin2 θ1
∂

∂θ1

+
1

r2 sin2 θ1 sin θ2

∂

∂θ2

sin θ2
∂

∂θ2

+
1

r2 sin2 θ1 sin2 θ2

∂2

∂θ2
3

(C.44)

For d = 5,

5∑

ν=1

√
|G| Gµ,ν ∂

∂Xν

= r4 sin3 θ1 sin2 θ2 sin θ3

×
(
∂

∂r
,

1

r2

∂

∂θ1

,
1

r2 sin2 θ1

∂

∂θ2

,
1

r2 sin2 θ1 sin2 θ2

∂

∂θ3

,
1

r2 sin2 θ1 sin2 θ2 sin2 θ3

∂

∂θ4

)

(C.45)

5∑

µ=1

5∑

ν=1

1√
|G|

∂

∂Xµ

√
|G| Gµ,ν ∂

∂Xν

=
1

r4

∂

∂r
r4 ∂

∂r
+

1

r2 sin3 θ1

∂

∂θ1

sin3 θ1
∂

∂θ1

+
1

r2 sin2 θ1 sin2 θ2

∂

∂θ2

sin2 θ2
∂

∂θ2

+
1

r2 sin2 θ1 sin2 θ2 sin θ3

∂

∂θ3

sin θ3
∂

∂θ3

+
1

r2 sin2 θ1 sin2 θ2 sin2 θ3

∂2

∂θ2
4

(C.46)
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For general values of d,

d∑

ν=1

√
|G| Gµ,ν ∂

∂Xν

= rd−1 sind−2 θ1 sind−3 θ2 · · · sin θd−2

×
(
∂

∂r
,

1

r2

∂

∂θ1

,
1

r2 sin2 θ1

∂

∂θ2

, · · · , 1

r2 sin2 θ1 sin2 θ2 · · · sin2 θd−2

∂

∂θd−1

)

(C.47)

d∑

µ=1

d∑

ν=1

1√
|G|

∂

∂Xµ

√
|G| Gµ,ν ∂

∂Xν

=
1

rd−1

∂

∂r
rd−1 ∂

∂r
+

1

r2 sind−2 θ1

∂

∂θ1

sind−2 θ1
∂

∂θ1

+
1

r2 sin2 θ1 sind−3 θ2

∂

∂θ2

sind−3 θ2
∂

∂θ2

+ · · ·

+
1

r2 sin2 θ1 sin2 θ2 sin2 θ3 · · · sin θd−2

∂

∂θd−2

sin θd−2
∂

∂θd−2

+
1

r2 sin2 θ1 sin2 θ2 · · · sin2 θd−2

∂2

∂θ2
d−1

(C.48)

As we saw in equation (??), the Laplace-Beltrami operator in hyperspherical coordinates
can be written as

∆ =
1

rd−1

∂

∂r
rd−1 ∂

∂r
− Λ2

r2
(C.49)

where r is the hyperradius and where Λ2 is the generalized angular momentum operator.
Comparing this with the results that we have just been discussing, we can see that for
d = 3,

−Λ2 =
1

sin θ1

∂

∂θ1

sin θ1
∂

∂θ1

+
1

sin2 θ1

∂2

∂θ2
2

(C.50)

while for d = 4,

−Λ2 =
1

sin2 θ1

∂

∂θ1

sin2 θ1
∂

∂θ1

+
1

sin2 θ1 sin θ2

∂

∂θ2

sin θ2
∂

∂θ2

+
1

sin2 θ1 sin2 θ2

∂2

∂θ2
3

(C.51)

and for d = 5,

−Λ2 =
1

sin3 θ1

∂

∂θ1

sin3 θ1
∂

∂θ1

+
1

sin2 θ1 sin2 θ2

∂

∂θ2

sin2 θ2
∂

∂θ2

+
1

sin2 θ1 sin2 θ2 sin θ3

∂

∂θ3

sin θ3
∂

∂θ3

+
1

sin2 θ1 sin2 θ2 sin2 θ3

∂2

∂θ2
4

(C.52)
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For general values of d, we have

−Λ2 =
1

sind−2 θ1

∂

∂θ1

sind−2 θ1
∂

∂θ1

+
1

sin2 θ1 sind−3 θ2

∂

∂θ2

sind−3 θ2
∂

∂θ2

+ · · ·

+
1

sin2 θ1 sin2 θ2 sin2 θ3 · · · sin θd−2

∂

∂θd−2

sin θd−2
∂

∂θd−2

+
1

sin2 θ1 sin2 θ2 · · · sin2 θd−2

∂2

∂θ2
d−1

(C.53)

We have until now been considering spaces that are intrinsically flat, but a d-dimensional
hyperspherical surface embedded in a d + 1-dimensional space has intrinsic curvature. If
the hyperradius r is regarded as a constant, then the Laplace-Beltrami operator for such
a surface is given by

∆ = −Λ2

r2
(C.54)

while the covariant metric tensor on the surface is

Gµ,ν =




r2 0 0 0 · · ·
0 r2 sin2 θ1 0 0 · · ·
0 0 r2 sin2 θ1 sin2 θ2 0 · · ·
0 0 0 r2 sin2 θ1 sin2 θ2 sin2 θ3 · · ·
...

...
...

...




(C.55)

The infinitesimal element of length on the surface, ds is given by

ds2 =
d∑

µ=1

d∑

ν=1

Gµ,νdX
µdXν

= r2
(
dθ2

1 + sin2 θ1dθ
2
2 + sin2 θ1 sin2 θ2dθ

2
3 + · · ·

)
(C.56)

C.7 Geodesics

In the geometry of curved spaces, geodesics play the role that straight lines play in Eu-
clidean geometry. The geodesic curves are local minima of path length. The minimal
geodesics between two points are the shortest paths through the curved space, and play an
important role when analyzing physical systems in curved space. They can be determined



272 LIVES IN MATHEMATICS

by the variational principle

s =

∫
ds =

∫ √√√√
d∑

µ=1

d∑

ν=1

Gµ,ν
dXµ

ds

dXν

ds
ds

=

∫ d∑

µ=1

d∑

ν=1

Gµ,ν
dXµ

ds

dXν

ds
ds = minimum (C.57)

The Euler-Lagrange equations which follow from this variational principle are

d

ds

∂L

∂(dXµ/ds)
− ∂L

∂Xµ
= 0 µ = 1, 2, · · · , d (C.58)

with

L =
d∑

µ=1

d∑

ν=1

Gµ,ν(X)
dXµ

ds

dXν

ds
(C.59)

The Euler-Lagrange equations for geodesics can be written in the form

d2Xσ

ds
= Γσµν

dXµ

ds

dXσ

ds
(C.60)

Here Γσµν is a Christoffel symbol, which is related to the metric tensors by

Γσµν =
1

2
Gσρ

(
∂Gρµ

∂Xν
+
∂Gρν

∂Xµ
− ∂Gµν

∂Xρ

)
(C.61)

In general relativity theory, the trajectories of particles are geodesics in a space-time con-
tinuum, whose metric is affected by the presence of other masses.



Appendix D

Sturmian basis sets

D.1 One-electron Coulomb Sturmians

Because of their completeness properties, one-electron Sturmian basis sets have long been
used in theoretical atomic physics [Shull and Löwdin, 1959], [Rotenberg, 1962], [Rotenberg, 1970],
[Avery, 2003], [Gasaneo et al., 2009]. Their form is identical with that of the familiar hy-
drogenlike atomic orbitals, except that the factor Z/n is replaced by a constant k. The
one-electron Coulomb Sturmians can be written as

χnlm(x) = Rnl(r)Ylm(θ, φ) (D.1)

where Ylm is a spherical harmonic, and where the radial function has the form

Rnl(r) = Nnl(2kr)le−krF (l + 1− n|2l + 2|2kr) (D.2)

Here

Nnl =
2k3/2

(2l + 1)!

√
(l + n)!

n(n− l − 1)!
(D.3)

is a normalizing constant, while

F (a|b|x) ≡
∞∑

t=0

at

t!bt
xt = 1 +

a

b
x+

a(a+ 1)

2b(b+ 1)
x2 + · · · (D.4)

is a confluent hypergeometric function. Coulomb Sturmian basis functions obey the fol-
lowing one-electron Schrödinger equation (in atomic units):

[
−1

2
∇2 − nk

r
+

1

2
k2

]
χnlm(x) = 0 (D.5)

which is just the Schrödinger equation for an electron in a hydrogenlike atom with the
replacement Z/n → k. All of the functions in a such a basis set correspond to the same
energy,

ε = −1

2
k2 (D.6)

273



274 LIVES IN MATHEMATICS

Table B.1: One-electron Coulomb Sturmian radial functions. If k is replaced by Z/n they are

identical to the familiar hydrogenlike radial wave functions.

n l Rn,l(r)

1 0 2k3/2e−kr

2 0 2k3/2(1− kr)e−kr

2 1
2k3/2

√
3

kr e−kr

3 0 2k3/2

(
1− 2kr +

2(kr)2

3

)
e−kr

3 1 2k3/2 2
√

2

3
kr

(
1− kr

2

)
e−kr

3 2 2k3/2

√
2

3
√

5
(kr)2 e−kr
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In other words the basis set is isoenergetic. In the wave equation obeyed by the Sturmians,
(D.5), the potential is weighted differently for members of the basis set corresponding to
different values of n. Equation (D.5) can be written in the form:

[
−1

2
∇2 − βn

Z

r
+

1

2
k2

]
χnlm(x) = 0 βn =

kn

Z
(D.7)

The weighting factors βn are chosen in such a way as to make all of the solutions isoener-
getic. All solutions correspond to the energy ε = −k2/2. In the Hamiltonian formulation of
physics, the eigenvalues of the wave equation are a spectrum of allowed energies, but here
all of the solutions of the wave equation correspond to the same energy, and the weighting
factors play the role of eigenvalues. The functions in a Coulomb Sturmian basis set can
be shown to obey and obey a potential-weighted orthonormality relation: To see this, we
consider two solutions, χnlm(x) and χn′l′m′(x), obeying the equations:

[
−1

2
∇2 +

1

2
k2

]
χnlm(x) =

nk

r
χnlm(x)

[
−1

2
∇2 +

1

2
k2

]
χ∗n′l′m′(x) =

n′k

r
χ∗n′l′m′(x) (D.8)

Multiplying the two equations from the left respectively by χ∗n′l′m′(x) and χnlm(x), inte-
grating over the coordinates, and subtracting the two equations, we obtain:

(n− n′)
∫
d3x χ∗n′l′m′(x)

1

r
χnlm(x) = 0 (D.9)

where we have also made use of the fact that (from Hermiticity)

∫
d3x χ∗n′l′m′(x)

[
−1

2
∇2 +

1

2
k2

]
χnlm(x)

−
∫
d3x χnlm(x)

[
−1

2
∇2 +

1

2
k2

]
χ∗n′l′m′(x) = 0 (D.10)

Thus for n 6= n′, the potential-weighted scalar product vanishes, and it vanishes also when
l′ 6= l or m′ 6= m because of the orthogonality of the spherical harmonics. The Coulomb
Sturmians are normalized in such a way that the orthonormality relation is:

∫
d3x χ∗n′l′m′(x)

1

r
χnlm(x) =

k

n
δn′nδl′lδm′m (D.11)

Because of their completeness and their close relationship with Coulomb potentials, Coulomb
Sturmians are widely used in atomic physics.
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D.2 Löwdin-orthogonalized Coulomb Sturmians

The Coulomb Sturmians form a complete set in the sense that any square-integrable func-
tion of x can be expanded in terms of them. For this reason, they are useful as basis
functions in many applications. Sometimes it may be convenient to use Coulomb Stur-
mian basis functions in a form that is orthonormalized in the conventional way. Let us
denote the orthogonalized Coulomb Sturmians by χ̃µ(x), where µ ≡ (n, l,m). This new
basis set is related to the original set of Coulomb Sturmians discussed above by

χ̃µ(x) =
∑

µ′

χµ(x)Wµ′,µ (D.12)

where Wµ′,µ is a transformation matrix. We wish the transformation to be such that

∫
d3x χ̃∗µ′(x)χ̃µ(x) ≡ S̃µ′,µ = δµ′,µ (D.13)

Suppose that

∫
d3x χ∗µ′(x)χµ(x) = Sµ′,µ (D.14)

Then, in matrix notation, the condition that the transformation matrix W must satisfy is

W †SW = I (D.15)

where the dagger denotes the Hermitian adjoint, i.e., the conjugate transpose. Following
Löwdin and Wannier, we can choose from all the possible solutions to the matrix equation
(D.15) the one for which

W † = W (D.16)

(This is sometimes called symmetrical orthogonalization.) Then (D.15) will be satisfied if

W = S−1/2 (D.17)

In order to find the square root of the overlap matrix S, we diagonalize it, take the inverse
square root in the diagonal representation, and then transform back to the original rep-
resentation. This gives us W = S−1/2, which we then use to perform the transformation
shown in equation (D.12).
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Figure D.1: A set of 15 Löwdin-orthogonalized Coulomb Sturmians corresponding to l = 0
and k = 1. The radial parts are shown as functions of r. If an arbitrary radial function is
to be expanded in terms of this set, the value of k for the set can be adjusted in such a way
as to give maximum accuracy. Löwdin-orthogonalized Coulomb Sturmians are used in the
Hartree-Fock calculations of Chapter 2.

D.3 The Fock projection

Coulomb Sturmian basis functions and their Fourier transforms are related by

χnlm(x) =
1√

(2π)3

∫
d3x eip·xχtnlm(p) (D.18)

and by the inverse transform

χtnlm(p) =
1√

(2π)3

∫
d3x e−ip·xχnlm(x) (D.19)

By projecting momentum-space onto the surface of a 4-dimensional hypersphere, V. Fock
[Fock, 1935], [Fock, 1958] was able to show that the Fourier-transformed Coulomb Stur-
mians can be very simply expressed in terms of 4-dimensional hyperspherical harmonics
through the relationship

χtn,l,m(p) = M(p)Yn−1,l,m(û) (D.20)

where

M(p) ≡ 4k5/2

(k2 + p2)2
(D.21)
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and

u1 =
2kp1

k2 + p2

u2 =
2kp2

k2 + p2

u3 =
2kp3

k2 + p2

u4 =
k2 − p2

k2 + p2
(D.22)

The 4-dimensional hyperspherical harmonics are given by [Judd, 1975], [Avery, 1989], [Avery, 2000],
[Avery and Avery, 2006]

Yλ,l,m(û) = Nλ,lC1+l
λ−l(u4)Yl,m(u1, u2, u3) (D.23)

where Yl,m is a spherical harmonic of of the familiar type, while

Nλ,l = (−1)λil(2l)!!

√
2(λ+ 1)(λ− l)!
π(λ+ l + 1)!

(D.24)

is a normalizing constant, and

Cα
j (u4) =

[j/2]∑

t=0

(−1)tΓ(j + α− t)
t!(j − 2t)!Γ(α)

(2u4)j−2t (D.25)

is a Gegenbauer polynomial. The first few The relationships between hyperspherical har-
monics, harmonic polynomials, and harmonic projection will be discussed in Appendix C.
Table 5.1 in Chapter 5 shows the first few hyperspherical harmonics.

D.4 Generalized Sturmians and many-particle prob-

lems

In 1968, Osvaldo Goscinski [[Goscinski, 1968, 2003]] generalized the concept of Sturmian
basis sets by considering isoenergetic sets of solutions to a many-particle Schrödinger equa-
tion with a weighted potential:

[
−1

2
∆ + βνV0(x)− Eκ

]
|Φν〉 = 0 (D.26)

The weighting factors βν are chosen in such a way as to make all of the functions in the
set correspond to the same energy, Eκ, and this energy is usually chosen to be that of
the quantum mechanical state which is to be represented by a superposition of generalized
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Sturmian basis functions. If the basis set is used to treat N -particle systems where the
particles have different masses, the operator ∆ in the kinetic energy term is given by

∆ ≡
N∑

j=1

1

mj

∇2
j (D.27)

while if the masses are all equal, it is given by the generalized Laplacian operator:

∆ ≡
d∑

j=1

∂2

∂x2
j

(D.28)

with d = 3N and
x = (x1, x2, ..., xd) (D.29)

Like the one-electron Coulomb Sturmians, the functions in generalized Sturmian basis sets
can be shown to obey a potential-weighted orthonormality relation [Avery and Avery, 2006]:

〈Φν′ |V0(x)|Φν〉 = δν′,ν
2Eκ
βν

(D.30)

D.5 Use of generalized Sturmian basis sets to solve

the many-particle Schrödinger equation

If we wish to solve a many-particle Schrödinger equation of the form
[
−1

2
∆ + V (x)− Eκ

]
|Ψκ〉 = 0 (D.31)

we can approximate a solution as a superposition of generalized Sturmian basis functions

|Ψκ〉 ≈
∑

ν

|Φν〉Bν,κ (D.32)

Substituting this superposition into the Schrödinger equation and remembering that each
of the basis functions satisfies eq.(D.26), we obtain:

∑

ν

[
−1

2
∆ + V (x)− Eκ

]
|Φν〉Bν,κ

=
∑

ν

[V (x)− βνV0(x)] |Φν〉Bν,κ ≈ 0 (D.33)

If we multiply from the left by a conjugate function from our generalized Sturmian basis
set and integrate over all coordinates, we obtain a set of secular equations from which the
kinetic energy term has disappeared:

∑

ν

〈Φ∗ν′ | [V (x)− βνV0(x)] Φν〉Bν,κ = 0 (D.34)
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If we introduce the definition

Tν′,ν ≡ −
1

pκ
〈Φ∗ν′|V (x)|Φν〉 (D.35)

where
pκ ≡

√
−2Eκ (D.36)

and make use of the potential-weighted orthonormality relations (D.30), we can rewrite
the secular equations in the form:

∑

ν

[Tν′,ν − pκδν′,ν ]Bν,κ = 0 (D.37)

The generalized Sturmian secular equations are strikingly different from conventional Hamil-
tonian secular equations in several ways:

• The kinetic energy term has disappeared.

• The matrix representing the approximate potential V0(x) is diagonal.

• The roots of the secular equations are not energies, but values of the scaling parameter
pκ, from which the energy can be obtained through the relationship Eκ = −p2

κ/2.

• For Coulomb potentials, the matrix Tν′,ν is energy-independent.

D.6 Momentum-space orthonormality relations for Stur-

mian basis sets

By arguments similar to those used in equations (D.8)-(D.11), a set of generalized Sturmian
basis functions can be shown to obey a potential-weighted orthonormality relation in direct
space ∫

dx Φ∗ν′(x)V0(x)Φν(x) = δν′,ν
2Eκ
βν

= −δν′,ν
p2
κ

βν
(D.38)

where
p2
κ ≡ −2Eκ (D.39)

(In equation (D.38) and in the remainder of this appendix, we abandon the Dirac bra and
ket notation in order to distinguish between functions of x ≡ (x1,x2, ...,xN) and functions
of p ≡ (p1,p2, ...,pN)). We would now like to find the momentum-space orthonormality
relations obeyed by Fourier transforms of the generalized Sturmian basis set. Because the
Fourier transform is unitary, the inner product of any two functions in L2 is preserved
under the operation of taking their Fourier transforms, i.e.

∫
dx f ∗(x)g(x) =

∫
dp f t∗(p)gt(p) (D.40)
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Using this well-known relationship with f ∗(x) = Φ∗ν′(x) and g(x) = V0(x)Φν(x), we have
∫
dx Φ∗ν′(x)V0(x)Φν(x) =

∫
dp Φt∗

ν′(p) [V0Φν ]
t (p) (D.41)

In order to evaluate [V0Φν ]
t (p), we remember the Fourier convolution theorem, which

states that the Fourier transform of the product of two functions is the convolution of their
Fourier transforms. Thus if a and b are any two functions in L2,

[ab]t (p′) ≡ 1

(2π)d/2

∫
dx e−ip

′·xa(x)b(x) =
1

(2π)d/2

∫
dp at(p′ − p)bt(p) (D.42)

Letting a(x) = V0(x) and b(x) = Φν(x) we have

[V0Φν ]
t (p′) =

1

(2π)d/2

∫
dp V t

0 (p′ − p)Φt
ν(p) (D.43)

Since the momentum-space integral equation corresponding to (D.26) has the form

(p′2 + p2
κ)Φ

t
ν(p

′) = − 2βν
(2π)d/2

∫
dp V t

0 (p′ − p)Φt
ν(p) (D.44)

it follows that

[V0Φν ]
t (p) = −(p2 + p2

κ)

2βν
Φt
ν(p) (D.45)

Finally, substituting (D.45) into (D.41), we obtain the momentum-space orthonormality
relations for a set of generalized Sturmian basis functions:

∫
dp Φt∗

ν′(p)

(
p2 + p2

κ

2p2
κ

)
Φt
ν(p) = δν′,ν (D.46)

Because all of the functions Φν(x) in the generalized Sturmian basis set obey equation
(D.26), the potential-weighted direct space orthonormality relations shown in equation
(D.38) can be rewritten in the form

∫
dx Φ∗ν′(x)

(−∆ + p2
κ

2p2
κ

)
Φν(x) = δν′,ν (D.47)

so that the momentum-space and direct-space orthonormality relations can be seen to
be related to each other in a symmetrical way. These weighted orthonormality rela-
tions in L2(Rd) are the usual orthonormality relations in the Sobolev space W

(1)
2 (Rd) (see

[Weniger, 1985]). For the case of unequal masses, where

∆ ≡
d∑

j=1

1

mj

∂2

∂x2
j

(D.48)

the momentum-space orthonormality relations for generalized Sturmians (D.46) takes on
the slightly modified form

∫
dp Φt∗

ν′(p)

(∑
j p

2
j/mj + p2

κ

2p2
κ

)
Φt
ν(p) = δν′,ν (D.49)
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D.7 Sturmian expansions of d-dimensional plane waves

If the set of generalized Sturmian basis functions is complete in the sense of spanning the
Sobolev space W

(1)
2 (Rd), we can use it to construct a weakly convergent expansion of a

d-dimensional plane wave (valid only in the sense of distributions). Suppose that we let

eip·x =

(
p2
κ + p2

2p2
κ

)∑

ν

Φt∗
ν (p)aν(x) (D.50)

We can then determine the unknown functions aν(x) by means of the orthonormality
relations (D.46). Multiplying (D.50) on the left by Φt∗

ν′(p) and integrating over dp making
use of (D.46), we obtain

∫
dp eip·xΦt∗

ν′(p) =
∑

ν

δν′,νaν(x) = aν′(x) (D.51)

so that

aν(x) =

∫
dp eip·xΦt

ν(p) = (2π)d/2Φν(x) (D.52)

Thus finally we obtain an expansion of the form

eip·x = (2π)d/2
(
p2
κ + p2

2p2
κ

)∑

ν

Φt∗
ν (p)Φν(x) (D.53)

If the set of generalized Sturmians Φν(x) does not span W
(1)
2 (Rd), equation (D.53) becomes

P
[
eip·x

]
= (2π)d/2

(
p2
κ + p2

2p2
κ

)∑

ν

Φt∗
ν (p)Φν(x) (D.54)

where P [eip·x] is the projection of the d-dimensional plane wave onto the subspace spanned
by the set {Φν(x)}. For example, if we are considering a system of N electrons, with d =
3N , the generalized Sturmian basis set might be antisymmetric with respect to exchange of
the N electron coordinates but otherwise complete. In that case, P [eip·x] would represent
the projection of the plane wave onto that part of Hilbert space corresponding to functions
of x that are antisymmetric with respect to exchange of the N electron coordinates. Neither
the expansion shown in equation (D.53) nor that shown in equation (D.54) is point-wise
convergent. In other words, we cannot perform the sums shown on the right-hand sides of
these equations and expect them to give point-wise convergent representations of the plane
wave or its projection. However, the expansions are valid in the sense of distributions. For
the case of unequal masses, the generalized Sturmian plane wave expansion takes on the
slightly modified form

eip·x = (2π)d/2

(
p2
κ +

∑
j p

2
j/mj

2p2
κ

)∑

ν

Φt∗
ν (p)Φν(x) (D.55)
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D.8 An alternative expansion of a d-dimensional plane

wave

In the Hamiltonian formulation of physics, one typically obtains sets of functions whose
orthonormality relation has the form

∫
dx Φ∗ν′(x)Φν(x) = δν′,ν (D.56)

Such a set of basis functions might, for example be the configurations resulting from the
solution of the N -electron approximate Schrödinger equation

[
−1

2
∆ + V0(x)− Eν

]
Φν(x) = 0 (D.57)

with x ≡ (x1, x2, ...., xd) and d = 3N . It is interesting to notice that a d-dimensional plane
wave can also be expanded in terms of a basis set with orthonormality relations of the form
shown in equation (D.56). To see this we write

e−ip·x =
∑

ν

aν(p)Φ∗ν(x) (D.58)

Multiplying from the left by Φν′(x) and integrating over the coordinates, we obtain the
relation

∫
dx e−ip·xΦν′(x) =

∑

ν

aν(p)

∫
dx Φ∗ν(x)Φν′(x)

=
∑

ν

aν(p)δν′,ν = aν′(p) = (2π)d/2Φt
ν′(p)

(D.59)

Thus we obtain the alternative expansion

e−ip·x = (2π)d/2
∑

ν

Φt
ν′(p)Φ∗ν(x) (D.60)

or

eip·x = (2π)d/2
∑

ν

Φt∗
ν′(p)Φν(x) (D.61)

The expansion (D.53) was a consequence of the weighted orthonormality relations obeyed
by generalized Sturmian basis sets, while the expansion (D.61) resulted from the more
conventional orthonormality relations (D.56). Both forms of the expansion are used in
Chapter 8.
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Appendix E

GENERALIZED STURMIANS
APPLIED TO ATOMS

E.1 Goscinskian configurations

The Generalized Sturmian Method (Appendix D) is a newly-developed direct method for
performing Configuration Interaction calculations on bound states [Avery, 1989]-[Avery and Avery, 2006].
It avoids the initial Hartree-Fock-Roothaan SCF calculation, and it is especially suitable
for calculating large numbers of excited states of few-electron atoms or ions.

When the Generalized Sturmian Method is applied to atoms or atomic ions, it is con-
venient to use basis functions that are Slater determinants:

|Φν〉 = |χµχµ′χµ′′ · · · | ≡
1√
N !

∣∣∣∣∣∣∣∣∣

χµ(x1) χµ′(x1) χµ′′(x1) · · ·
χµ(x2) χµ′(x2) χµ′′(x2) · · ·
χµ(x3) χµ′(x3) χµ′′(x3) · · ·

...
...

...

∣∣∣∣∣∣∣∣∣
(E.1)

built from hydrogenlike atomic spin-orbitals of the form

χµ(xi) ≡ χn,l,m,ms(xi) ≡ Rn,l(ri)Yl,m(θi, φi)

{
αi ms = 1/2
βi ms = −1/2

(E.2)

with weighted nuclear charges Qν . In other words, the atomic spin-orbitals have the form

285
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shown in equation (5.64), with radial functions given by

R1,0(r) = 2Q3/2
ν e−Qνr

R2,0(r) =
Q

3/2
ν√
2

(
1− Qνr

2

)
e−Qνr/2

R2,1(r) =
Q

5/2
ν

2
√

6
r e−Qνr/2

R3,0(r) =
2Q

3/2
ν

3
√

3

(
1− 2Qνr

3
+

2Q2
νr

2

27

)
e−Qνr/3

...
...

... (E.3)

The reader will recognize these as the familiar hydrogenlike radial functions with the nu-
clear charge Z replaced by Qν . If the effective charges Qν characterizing the configurations
|Φν〉 are chosen in such a way that

Qν = βνZ =

( −2Eκ
1
n2 + 1

n′2
+ 1

n′′2
+ · · ·

)1/2

(E.4)

so that

Eκ = −Q
2
ν

2

(
1

n2
+

1

n′2
+

1

n′2
+ · · ·

)
(E.5)

the configurations will obey the approximate N -electron Schrödinger equation:
[
−1

2

N∑

j=1

∇2
j + βνV0(x)− Eκ

]
|Φν〉 = 0 (E.6)

where

V0(x) = −
N∑

j=1

Z

rj
(E.7)

is the nuclear attraction potential. In equation (E.6), the energy Eκ is kept constant
for the whole basis set, while the weighting factors βν are adjusted to make the basis
set isoenergetic. Thus the weighting factors βν play the role of eigenvalues in equation
(E.6). This type of problem has been called the conjugate eigenvalue problem by Coul-
son, Josephs, Goscinski and others [Goscinski, 1968, 2003], and it is characteristic for the
equations defining generalized Sturmian basis sets (Appendix B).

To see that with the special choice of weighted charges shown in equation (E.4) |Φν〉 will
satisfy (E.6), we first notice that the hydrogenlike atomic orbitals with weighted nuclear
charges obey the 1-electron Schrödinger equation:

[
−1

2
∇2
j +

Q2
ν

2n2
− Qν

rj

]
χµ(xj) = 0 (E.8)
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Since the Slater determinant |Φν〉 is an antisymmetrized product of atomic orbitals, all of
which obey (E.8), it follows that

[
−1

2

N∑

j=1

∇2
j

]
|Φν〉 =

[
−
(
Q2
ν

2n2
+

Q2
ν

2n′2
+ · · ·

)
+

(
Qν

r1

+
Qν

r2

+ · · ·
)]
|Φν〉

= [Eκ − βνV0(x)] |Φν〉 (E.9)

and thus equation (E.6) is satisfied. Each configuration |Φν〉 has its own effective nu-
clear charge Qν . Within a particular configuration, the hydrogenlike atomic orbitals are
orthonormal ∫

dτj χ
∗
µ′(xj)χµ(xj) = δµ′,µ (E.10)

and they also obey the virial relationship

−
∫
dτj |χµ(xj)|2

Qν

rj
= −Q

2
ν

n2
(E.11)

From equations (E.6), (E.10) and (E.11), it can be shown [Avery, 2000], [Avery and Avery, 2006]
that the generalized Sturmian configurations |Φν〉 obey the potential-weighted orthonor-
mality relation

〈Φ∗ν′|V0|Φν〉 = δν′,ν
2Eκ
βν

(E.12)

We next introduce the definitions

pκ ≡
√
−2Eκ (E.13)

and

Rν ≡
√

1

n2
+

1

n′2
+ · · · (E.14)

With the help of these definitions, equation (E.4) can be written in the form

Qν = βνZ =
pκ
Rν

(E.15)

The set of Sturmian configurations forms a set of isoenergetic solutions of the approximate
Schrödinger equation (E.6), where the potential is weighted, and the weighting factors βν
are chosen in such a way as to insure that all the solutions correspond to a common energy.
From (E.13) we can see that their common energy Eκ is related to pκ by

Eκ = −p
2
κ

2
(E.16)

In previous publications we have called such atomic configurations Goscinskian configura-
tions to recognize Prof. Osvaldo Goscinski’s pioneering work in generalizing the concept
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of Sturmian basis sets [Goscinski, 1968, 2003]. The non-relativistic Schrödinger equation
of an N -electron atom has the form:

[
−1

2

N∑

j=1

∇2
j + V (x)− Eκ

]
|Ψκ〉 = 0 (E.17)

where

V (x) = V0(x) + V ′(x) (E.18)

Here V0(x) is the nuclear attraction potential shown in equation (E.7) while V ′(x) is the
interelectron repulsion potential

V ′(x) =
N∑

i>j

1

rij
(E.19)

We can try to build up the wave function from a superposition of Goscinskian configura-
tions, i.e. from a superposition of isoenergetic solutions of the approximate wave equation
(E.6), where V0 is the nuclear attraction potential of the atom. Thus we write:

|Ψκ〉 ≈
∑

ν

|Φν〉Cν,κ (E.20)

Inserting this superposition into (E.17) we have

∑

ν

[
−1

2
∆ + V (x)− Eκ

]
|Φν〉Cν,κ ≈ 0 (E.21)

However, each of the basis functions obeys (E.6), and therefore we can rewrite (E.21) in
the form ∑

ν

[V (x)− βνV0(x)] |Φν〉Cν,κ ≈ 0 (E.22)

The energy term Eκ is now nowhere to be seen, and a remark is perhaps needed here to
explain what has happened to it: The configurations in our Generalized Sturmian basis set
are isoenergetic. They all correspond to the same energy, Eκ, since the weighting factors
βν are chosen especially to make them do so. What we have done in going from (E.21) to
(E.22) is to choose this energy to be the same as that which appears in (E.21). In other
words, the energy to which all the members of our basis set correspond is chosen to be
equal to the energy of the state that we are trying to approximate.

If we take the scalar product of (E.22) with a conjugate function from our basis set, we
obtain the set of secular equations:

∑

ν

〈Φν′| [V (x)− βνV0(x)] |Φν〉Cν,κ = 0 (E.23)
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We now introduce the definitions:

T 0
ν′,ν ≡ −

1

pκ
〈Φ∗ν′|V0|Φν〉 (E.24)

and

T ′ν′,ν ≡ −
1

pκ
〈Φ∗ν′|V ′|Φν〉 (E.25)

From the potential-weighted orthonormality relations (E.12) we can see that

T 0
ν′,ν = δν′νZRν (E.26)

Notice that the nuclear attraction matrix T 0
ν′,ν is both diagonal and energy-independent.

The interelectron repulsion matrix T ′ν′,ν can be evaluated using methods discussed in Ap-
pendix D, and it is also energy-independent. In order to see that T ′ν′,ν really is energy-
independent, we notice that it is built up from terms of the form

1

pκ
Jµ1,µ2,µ3,µ4 =

1

pκ

∫
d3x

∫
d3x′ ρµ1,µ2(x)

1

|x− x′|ρµ3,µ4(x
′) (E.27)

where densities are defined by

ρµ1,µ2(x) ≡ χ∗µ1(x)χµ2(x)

ρµ3,µ4(x
′) ≡ χ∗µ3(x

′)χµ4(x
′) (E.28)

and where the orbitals are the hydrogenlike orbitals with weighted nuclear charge shown
in equations (E.2) and (E.3). We now let

s ≡ pκx

s′ ≡ pκx
′ (E.29)

Then, making the substitution Qν → pκ/Rν in (E.3) we have

ρµ1,µ2(x) = p3
κρ̃µ1,µ2(s)

ρµ3,µ4(x
′) = p3

κρ̃µ3,µ4(s
′) (E.30)

where ρ̃µ1,µ2(s) and ρ̃µ3,µ4(s
′) are pure functions of s and s′ respectively. Finally, noticing

that

1

pκ|x− x′| =
1

|s− s′| (E.31)

we can write

1

pκ
Jµ1,µ2,µ3,µ4 =

∫
d3s

∫
d3s′ ρ̃µ1,µ2(s)

1

|s− s′| ρ̃µ3,µ4(s
′) (E.32)
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Since the building-blocks from which it composed are independent of pκ, the interelectron
repulsion matrix T ′ν′,ν is also independent of pκ and hence independent of energy. The
energy-independent interelectron repulsion matrix T ′ν′,ν consists of pure numbers (in atomic
units) which can be evaluated once and for all and stored.

With the help of equations (E.24)-(E.26), the secular equation (E.23) can be rewritten
in the form:

∑

ν

[
−pκδν′,νZRν − pκT ′ν′,ν + βνpκδν′,νZRν

]
Cν,κ = 0 (E.33)

Finally, using the relationship
βνZRν = pκ (E.34)

and dividing by pκ, and reversing the signs, we obtain

∑

ν

[
δν′,νZRν + T ′ν′,ν − pκδν′,ν

]
Cν,κ = 0 (E.35)

The Generalized Sturmian secular equation for atoms and atomics ions (E.35) differs in
several remarkable ways from the secular equations that would be obtained using a Hamil-
tonian method:

1. The kinetic energy term has disappeared.

2. The nuclear attraction term, δν′,νZRν , is diagonal.

3. The interelectron repulsion matrix T ′ν′,ν is energy-independent. It consists of dimen-
sionless pure numbers.

4. Finally, the roots of the secular equations are not energies but values of the parameter
pκ, which is related to the energy spectrum through equation (E.16). The parameter
pκ = βνZRν = QνRν can be thought of as a scaling parameter, since the effective
nuclear charges associated with the Goscinskian configurations are proportional to
it.

5. The configurations |Φν〉 in the basis set are not fully determined until the secular
equations have been solved. Only the form of the basis functions is known in advance,
but not the scale. When the secular equation is solved, the resulting spectrum of
pκ values yields not only a spectrum of energies but a nearly optimum set of basis
functions for the representation of each state. The basis set for the representation
of highly excited states is diffuse, while the set for representation of tightly-bound
states is contracted. The step of optimizing Slater exponents for each problem is
thus not needed.

6. Once the energy-independent interelectron repulsion matrix T ′ν′,ν has been constructed,
the properties of an entire isoelectronic series can be calculated with almost no ad-
ditional effort.
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E.2 Relativistic corrections

If the number of electrons N is kept constant while Z is allowed to increase, the energies
calculated from the Generalized Sturmian secular equation approach those found by so-
lution of the non-relativistic Schrödinger equation, but a relativistic correction must be
added in order for the energies to approach experimental values. A crude relativistic cor-
rection can be found for a multiconfigurational state Ψκ(x) =

∑
ν Φν(x)Cνκ by calculating

the ratio of the relativistic energy of the with interelectron repulsion entirely neglected to
the non-relativistic energy, again with interelectron repulsion entirely neglected. The ratio
can be written in the form

fκ(Z) =
Eκ,rel

Eκ,nonrel

=

∑
ν C

2
νκ〈Φν |H0|Φν〉rel

−1
2
Z2
∑

ν C
2
νκR2

ν

(E.36)

Here

〈Φν |H0|Φν〉rel =
∑

µ∈ν

εµ,rel µ = (n, l,m,ms) (E.37)

is the relativistic energy of the configuration Φν(x) with interelectron repulsion entirely
neglected, while

−
∑

µ∈ν

1

2

Z2

n2
= −1

2
Z2R2

ν µ = (n, l,m,ms) (E.38)

is the nonrelativistic energy of Φν(x). The quantity εµ,rel represents the relativistic energy
of a single electron moving in the attractive Coulomb potential of a nucleus with charge Z.
This energy is easy to calculate exactly [Akhiezer and Berestetskii, 1965], if effects such as
vacuum polarization and the Lamb shift are neglected. It is given by:

εµ,rel =
c2

[
1 +

(
Z

c(γ+n−|j+1/2|)

)2
]1/2
− c2 (E.39)

γ ≡
√(

j +
1

2

)2

−
(
Z

c

)2

c = 137.036 (E.40)

where j is the total angular momentum (orbital plus spin) of a single electron, i.e. l ± 1
2
.

The corrected energy, fκ(Z)Eκ,nonrel, agrees closely with the experimental values of energies,
especially when Z is large compared with N .

The approximate relativistic correction discussed here is by no means confined to the
Generalized Sturmian Method. It can be used in quantum calculations of every kind, per-
formed on atoms and molecules. The assumption behind the correction is that relativistic
effects are due mainly to the nuclear attraction part of the Hamiltonian, and only to a
lesser extent to interelectron repulsion terms.
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Table E.1: This table shows the relativistic correction for a single electron moving in the
field of a nucleus with charge Z, i.e. the relativistic energy without the rest energy, divided
by the non-relativistic energy. It is interesting to notice that the correction affects the 4th
significant figure of the energy for values of Z as low as 10. In all cases the effect of the
relativistic correction is to increase the binding energy.

n j Z=1 Z=10 Z=20 Z=30

1
1

2
1.00001 1.00133 1.00538 1.01228

2
1

2
1.00002 1.00167 1.00673 1.01537

2
3

2
1.00000 1.00033 1.00133 1.00301

3
1

2
1.00001 1.00133 1.00538 1.01226

3
3

2
1.00000 1.00044 1.00178 1.00402

3
5

2
1.00000 1.00015 1.00059 1.00133
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Figure E.1: This figure shows εµ/Z
2 for n=3. The non-relativistic energy is

the horizontal line εnonrel = −1/18, while the relativistic energies are shown by
curves.

E.3 The large-Z approximation: Restriction of the

basis set to an R-block

If interelectron repulsion is entirely neglected, i.e. when disregarding the second term in
Eq. (E.35), the calculated energies Eκ become those of a set of N completely independent
electrons moving in the field of the bare nucleus:

Eκ = −p
2
κ

2
−→ −1

2
Z2Rν

2 = − Z
2

2n2
1

− Z2

2n2
2

− · · · − Z2

2n2
N

(E.41)

In the large-Z approximation, we do not neglect interelectron repulsion, but we restrict
the basis set to those Goscinskian configurations that would be degenerate if interelectron
repulsion were entirely neglected, i.e., we restrict the basis to a set of configurations all
of which correspond to the same value of Rν . In that case, the first term in (E.35) is a
multiple of the identity matrix, and the eigenvectors Cνκ are the same as those that would
be obtained by diagonalizing the energy-independent interelectron repulsion matrix T ′ν′ν ,
since the eigenfunctions of any matrix are unchanged by adding a multiple of the unit
matrix. The simplified secular equation then becomes:

∑

ν

[T ′ν′ν − λκδν′ν ]Cνκ = 0 (E.42)

The roots are shifted by an amount equal to the constant by which the identity matrix is
multiplied:

pκ = ZRν + λκ = ZRν − |λκ| (E.43)
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10 20 30 40 50
Z

-1.4

-1.3

-1.2

-1.1

-1.0

���������
E

Z2

Figure E.2: The ground state of the carbon-like isoelectronic series, calculated in
the large-Z approximation. The energies divided by Z2 are shown as functions
of Z. Experimental values are indicated by dots, while the energies calculated
from equation (E.44) are shown as curves. The lower (solid) curve, which
approaches the experimental values with increasing Z, has been corrected for
relativistic effects. The upper (dashed) curve is uncorrected.

and the energies become

Eκ = −1

2
(ZRν − |λκ|)2 (E.44)

With the relativistic correction of equation (E.36), this becomes

Eκ = −f(Z)
1

2
(ZRν − |λκ|)2 (E.45)

Since the roots λκ are always negative, we may use the form −|λκ| in place of λκ to make
explicit the fact that interelectron repulsion reduces the binding energies, as of course it
must. The roots λκ are pure numbers that can be calculated once and for all and stored.
From these roots, a great deal of information about atomic states can be found with very
little effort.

E.4 Electronic potential at the nucleus in the large-Z

approximation

The electronic potential ϕ(x1) is related to the electronic density distribution by

ϕ(x1) =

∫
d3x′1

ρ(x′1)

|x1 − x′1|
(E.46)
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If the coordinate system is centered on the nucleus, the electronic potential at the nucleus
is then given by

ϕ(0) =

∫
d3x′1

ρ(x′1)

|x′1|
(E.47)

But the electron density corresponding to the state Ψκ is defined as

ρ(x1) = N

∫
ds1

∫
d3x2

∫
ds2 · · ·

∫
d3xN

∫
dsNΨ∗κ(x)Ψκ(x) (E.48)

where the integral is taken over the spin coordinate of the first electron and over the space
and spin coordinates of all the other electrons. The wave function Ψκ(x) =

∑
ν Φκ(x)Bνκ

is a linear combination of Goscinskian configurations. Thus the density is given by

ρ(x1) =
∑

ν′,ν

ρν′ν(x1)B∗νκBνκ (E.49)

where

ρν′ν(x1) = N

∫
ds1

∫
d3x2

∫
ds2 · · ·

∫
d3xN

∫
dsNΦ∗ν′(x)Φν(x)

=





0 if ν ′ and ν differ by 2 or more orbitals

χ∗µ′(x1)χµ(x1) if ν ′ and ν differ only by µ→ µ′

∑N
i=1 |χµi(x1)|2 if ν ′ = ν

(E.50)

In equation (E.50) we have made use of the fact that within an R-block, the atomic spin-
orbitals are orthonormal.

Within the framework of the large-Z approximation we have
∫
dx Ψ∗κ(x)V0(x)Ψκ(x) =

∑

ν′

∑

ν

B∗ν′κBνκ

∫
dx Φ∗ν′(x)V0(x)Φν(x)

= −p
2
κ

βν

∑

ν

|Bνκ|2 (E.51)

In the second step above, we make use of the potential weighted orthonormality relation
(E.12). Further, since

∑
ν |Bνκ|2 = 1, equation (E.51) reduces to
∫
dx Ψ∗κ(x)V0(x)Ψκ(x) = −p

2
κ

βν
= −pκZRν (E.52)

This result can be used to express the electronic potential at the nucleus in a very simple
form. Combining (E.47) and (E.48), we obtain

ϕ(0) = N

∫
dx

1

|x1|
Ψ∗κ(x)Ψκ(x) (E.53)
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Figure E.3: When interelectron repulsion is entirely neglected, the electronic
potential at the nucleus is given by ZRν

2, which is exactly piecewise linear in
N . The effect of interelectron repulsion is to decrease ϕ(0) and to make the
dependence only approximately piecewise linear. The figure shows ϕ(0) ne-
glecting interelectron repulsion (upper values) and including it (lower values).
The dots are calculated from the electronic densities of the ground state wave
functions, whereas the lines are the closed form expressions found in equations
(E.58) and (E.56).

From the definition of V0, equation (E.7), and from the fact that each term in the sum in
(E.7) gives the same contribution, we have

ϕ(0) = − 1

Z

∫
dx Ψ∗κ(x)V0(x)Ψκ(x) (E.54)

Combining equations (E.54) and (E.52) we obtain the extremely simple result:

ϕ(0) = pκRν (E.55)

which can alternatively be written in the form:

ϕ(0) = ZRν
2 − |λκ|Rν (E.56)

or in a third form:

ϕ(0) = QνRν
2 (E.57)

since Qν = Z − |λκ|/Rν . From equations (E.55)-(E.57) it follows that for an isonuclear
series, the electronic potential at the nucleus depends on N in an approximately piecewise
linear way. For example, let us consider the isonuclear series where Z = 18. Keeping the



E.5. CORE IONIZATION ENERGIES 297

nuclear charge Z constant at this value, we begin to add electrons. For the ground state
we have:

Rν
2 ≡ 1

n2
1

+
1

n2
2

+ · · ·+ 1

n2
N

=





N
1

N ≤ 2

2
1

+ N−2
4

2 ≤ N ≤ 10

2
1

+ 8
4

+ N−10
9

10 ≤ N ≤ 18

(E.58)

E.5 Core ionization energies

The large-Z approximation can be used to calculate core-ionization energies, i.e. the
energies required to remove an electron from the inner shell of an atom. From (E.44) we
can see that this energy will be given by

∆E =
1

2

[
(ZRν − |λκ|)2 − (ZRν

′ − |λ′κ|)2
]

(E.59)

where the unprimed quantities refer to the original ground state, while the primed quan-
tities refer to the core-ionized states. Since

Rν
2 −Rν

′2 = 1 (E.60)

Equation (E.59) can be written in the form

∆E − Z2

2
= Z [Rν

′|λ′κ| − Rν |λκ|] +
|λκ|2 − |λ′κ|2

2
(E.61)

Thus we can see that within the framework of the large-Z approximation, the quantity
∆E−Z2/2 is linear in Z for an isoelectronic series. This quantity represents the contribu-
tion of interelectron repulsion to the core ionization energy, since if interelectron repulsion
is completely neglected, the core ionization energy is given by ∆E = Z2/2. Core ionization
energies calculated from equations (E.59)-(E.61) are shown in Figures E.4 through E.6.
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Figure E.4: For isoelectronic series, equation (E.61) indicates that within the
large-Z approximation, the quantity ∆E − Z2/2 is exactly linear in Z, as is
illustrated above. ∆E is the core ionization energy.
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Figure E.5: For isonuclear series, the dependence of the core ionization energy
on N is approximately piecewise linear. Whenever a new shell starts to fill, the
slope of the line changes. The dots in the figure were calculated using equation
(E.61), where it is not obvious that the dependence ought to be approximately
piecewise linear. However, equations (E.58) and (E.56) can give us some insight
into the approximately piecewise linear relationship.
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Figure E.6: This figure shows the dependence of the core-ionization energy on
both N and Z for the filling of the n = 2 shell. Points with N > Z are omit-
ted because the large-Z approximation cannot be used for these points. The
energies are in Hartrees.

E.6 Advantages and disadvantages of Goscinskian con-

figurations

We seen that when V0(x) is chosen to be the the Coulomb attraction of the bare nucleus,
the approximate Schrödinger equation

[
−1

2

N∑

j=1

∇2
j + βνV0(x)− Eκ

]
|Φν〉 = 0 βνV0(x) = −

N∑

j=1

Qν

rj
(E.62)

can be solved exactly using configurations composed of hydrogenlike spin-orbitals with
the especially chosen weighted charges Qν shown in equation (E.4). There is no need to
calculate the weighting factors βν . These are obtained automatically when the secular
equation is solved. Nor is there a need to normalize the configurations. This is also
achieved automatically. Thus the choice of V0(x) as the potential of the bare nucleus has
many advantages; but it also has disadvantages. Just as is the case in perturbation theory,
convergence is most rapid if V0(x) is chosen to be as close as possible to the actual potential.
By choosing V0(x) to be the Coulomb attraction of the bare nucleus, we have neglected
interelectron repulsion. This is why the Generalized Sturmian Method with Goscinskian
configurations works best when the number of electrons in an atom or ion is small, and why
it works especially well when Z >> N , i.e. when the Coulomb attraction of the nucleus
dominates over the effects of interelectron repulsion.

To extend the range of applicability of the method to atoms and ions with large values
of N , we would need to choose a V0(x) which included some of the effects of interelec-
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tron repulsion. For example, we could let it be the Hartree potential. The approximate
Schrödinger equation (E.6) can always be solved provided that it is separable, and it is
separable whenever the approximate potential has the form

V0(x) =
N∑

j=1

v(xj) (E.63)

The separated form of (E.6) becomes:

[
−1

2
∇2
j + βνv(xj)− εζ

]
ϕζ(xj) = 0 (E.64)

where the weighting factors βν must be chosen in such a way that

∑

ζ∈ν

εζ = Eκ (E.65)

If the spin-orbitals ϕζ(xj) satisfy (E.64), then configurations of the form

|Φν〉 = |ϕζϕζ′ϕζ′′ · · · | ≡
1√
N !

∣∣∣∣∣∣∣∣∣

ϕζ(x1) ϕζ′(x1) ϕζ′′(x1) · · ·
ϕζ(x2) ϕζ′(x2) ϕζ′′(x2) · · ·
ϕζ(x3) ϕζ′(x3) ϕζ′′(x3) · · ·

...
...

...

∣∣∣∣∣∣∣∣∣
(E.66)

will satisfy the approximate Schrödinger equation (E.6). Some of the neatness of the
Generalized Sturmian Method with Goscinskian configurations is certainly lost by choosing
a V0(x) that includes effects of interelectron repulsion, but it could be worth paying this
price in order to extend the method to atoms and atomic ions with larger values of N . We
are at present exploring these possibilities, and some work in this direction is also being
done by Prof. Gustavo Gasaneo and his group in Argentina.

E.7 R-blocks, invariant subsets and invariant blocks

To tie the discussion of this chapter in with the general principles discussed in Chapter 1, we
identify T with the operator whose roots and eigenfunctions we wish to study. The group
of symmetry operations G that leave the nuclear attraction and interelectron repulsion
matrix of an atom invariant consists of rotations of the entire system about the nucleus,
together with reflections and inversions that do not affect the interelectron distances. These
operations do not affect the radial parts of the atomic orbitals from which the Goscinskian
configurations are constructed, nor do they affect the spin. Thus the set of configurations,
all of which are characterized by the same value of

Rν ≡
√

1

n2
+

1

n′2
+

1

n′′2
+ · · · (E.67)
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i.e. configurations all of which are built from hydrogenlike atomic spin-orbitals with a
particular set of principal quantum numbers (n, n′, n′′, . . .), is closed under G, and it cor-
responds to an invariant subset as discussed in Chapter 1. The block of T ′ based on it
corresponds to an invariant block. As expected, the eigenfunctions of interelectron repul-
sion matrix for the R-blocks are the symmetry-adapted basis functions that we desire. In
Chapter 1, we mentioned that when the roots of an invariant block are degenerate, then in
order to take full advantage of the symmetry of the problem, we need to add an extremely
small perturbation which will slightly remove the degeneracy. In the present case, this
slight perturbation is given by

Tp = aLz + bSzF (E.68)

where a and b are two very small irrational numbers. (They are chosen to be irrational
in order to avoid accidental degeneracies.) When this small perturbation is added to
T ′, the degeneracy is slightly removed. The eigenfunctions of T ′ + Tp for an R-block
are then Russell-Saunders states, i.e. they are simultaneous eigenfunctions of the total
angular momentum operator L2, its z-component Lz, the total spin operator S2, and its
z-component Sz. We can ask how many linearly independent configurations there are in a
ground-state R-block. The answer is that when the Pauli principle is taken into account,
the number of configurations mk in an R-block is given by the binomial coefficient

(
ns
Nv

)
=

ns!

Nv!(ns −Nv)!
≡ mk (E.69)

where ns is the number of atomic spin-orbitals in the highest filled shell, while Nv is the
number of valence electrons. For the ground-state configurations illustrated in Tables 4.3
and 4.4, Nv is the number of valence electrons. For example, for the ground state of
lithium, we are starting to fill the n = 2 shell, for which ns=8. Since there is only one
valence electron, Nv=1 and

mk for lithium ground state:

(
ns
Nv

)
=

(
8
1

)
=

8!

1!(8− 1)!
= 8 (E.70)

Tables 4.3 and 4.4 show the roots of T ′ and their corresponding spectral terms for the
first row of the periodic table. For the lithiumlike isoelectronic series, one of the roots
corresponds to a 2S state and the other corresponds to a 2P state. We now remember that
the total degeneracy of a Russell-Saunders state is given by (2L + 1) × (2S + 1), where
L and S are respectively the quantum numbers of total orbital angular momentum and
total spin. The 2S state is thus 2-fold degenerate, while the 2P state is 6-fold degenerate.
By diagonalizing the ground-state R-block for lithium, we thus obtain 8 Russell-Saunders
states, the same as the number of Pauli-allowed states in the block. With a little effort,
the reader can verify that the number of Russell-Saunders states shown in Tables 4.3
and 4.4 corresponds to the number of Pauli-allowed configurations given by the binomial
coefficient in equation (E.69). Of course for the lithium ground state, the construction of
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Table E.2: Eigenvalues of the 2-electron interelectron repulsion matrix T ′ν′,ν for S=1,
MS=1, n = 2 and n′=3, 4, 5.

n′=3 n′ = 4 n′=5
|λκ| term |λκ| term |λκ| term

.108252 3S .077484 3S .056075 3S

.134734 3P .087582 3P .065019 3P

.135408 3D .090845 3D .061128 3P

.138421 3P .093401 3P .063370 3D

.155155 3F .099235 3F .067758 3F

.160439 3P .099991 3P .067934 3P

.165613 3D .104253 3D .070494 3D

.168814 3S .106271 3D .071269 3D

.173917 3D .107976 3S .072413 3F

.186893 3P .108188 3F .072857 3S
.111210 3G .073295 3G
.111264 3F .073588 3G
.113313 3P .073920 3F
.114381 3D .074306 3G

.074578 3H

.074963 3F

.075173 3P

.075545 3D

Russell-Saunders states is trivial, while for beryllium it can be accomplished with the help
of Clebsch-Gordan coefficients. However for carbon, where

mk for carbon ground state:

(
ns
Nv

)
=

(
8
4

)
=

8!

4!(8− 4)!
= 70 (E.71)

the construction of the Russell-Saunders states is non-trivial. An indication of the nature
of the states obtained is given in Table 4.5. As can easily be verified, the sum of the
degeneracies shown in the table is equal to 70.



E.7. R-BLOCKS, INVARIANT SUBSETS AND INVARIANT BLOCKS 303

Table E.3: Roots of the ground state R-block of the interelectron repulsion matrix for
the Li-like, Be-like, B-like and C-like isoelectronic series.

Li-like Be-like B-like C-like
|λκ| term |λκ| term |λκ| term |λκ| term

0.681870 2S 0.986172 1S 1.40355 2P 1.88151 3P

0.729017 2P 1.02720 3P 1.44095 4P 1.89369 1D

1.06426 1P 1.47134 2D 1.90681 1S

1.09169 3P 1.49042 2S 1.91623 5S

1.10503 1D 1.49395 2P 1.995141 3D

1.13246 1S 1.52129 4S 1.96359 3P

1.54037 2D 1.98389 3S

1.55726 2P 1.98524 1D

1.99742 1P

2.04342 3P

2.05560 1D

2.07900 1S
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Table E.4: Roots of the ground state R-block of the interelectron repulsion matrix T ′ν′ν for
the N-like, O-like, F-like and Ne-like isoelectronic series.

N-like O-like F-like Ne-like
|λκ| term |λκ| term |λκ| term |λκ| term

2.41491 4S 3.02641 3P 3.68415 2P 4.38541 1S

2.43246 2D 3.03769 1D 3.78926 2S

2.44111 2P 3.05065 1S

2.49314 4P 3.11850 3P

2.52109 2D 3.14982 1P

2.53864 2S 3.24065 1S

2.54189 2P

2.61775 2P
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Table E.5: Eigenvalues of T ′ν′,ν for the carbon-like Rν =
√

3 block.

|λκ| term degen. configuration

1.88151 3P 9 .994467(1s)2(2s)2(2p)2+.105047(1s)2(2p)4

1.89369 1D 5 .994467(1s)2(2s)2(2p)2–.105047(1s)2(2p)4

1.90681 1S 1 .979686(1s)2(2s)2(2p)2+.200537(1s)2(2p)4

1.91623 5S 5 (1s)2(2s)(2p)3

1.95141 3D 15 (1s)2(2s)(2p)3

1.96359 3P 9 (1s)2(2s)(2p)3

1.98389 3S 3 (1s)2(2s)(2p)3

1.98524 1D 5 (1s)2(2s)(2p)3

1.99742 1P 3 (1s)2(2s)(2p)3

2.04342 3P 9 .105047(1s)2(2s)2(2p)2–.994467(1s)2(2p)4

2.05560 1D 5 .105047(1s)2(2s)2(2p)2+.994467(1s)2(2p)4

2.07900 1S 1 .200537(1s)2(2s)2(2p)2–.979686(1s)2(2p)4
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E.8 Invariant subsets based on subshells; Classifica-

tion according to ML and Ms

When we are dealing with configurations corresponding to excited states of an atom, the
number of Pauli-allowed states in an R-block may be very large, and we can ask whether
our large basis set of Goscinskian configurations W can be divided into smaller invariant
subsets Wk. A little thought reveals that this is indeed possible. The symmetry operations
that leave T ′ invariant do not affect the radial parts Rn,l(r) of the atomic orbitals, so sets
of configurations built from the subshell sets ((n, l), (n′l′), (n′′, l′′), . . .) will be invariant
subsets of our large basis set W under the operations of G. The results will then differ
slightly from those obtained in the large-Z approximation, which allows mixing between
subshells. As an example of an invariant subset based on subshells we can consider the set
of configurations corresponding to (1s)(2d)2 for the lithium-like isoelectronic series:

(1s)(3d)2

(
2
1

)
×
(

10
2

)
= 90 (E.72)

The invariant subset contains 90 configurations. Diagonalization of the 90×90 block yields
the Russell Saunders states shown in Table 4.5.

We can also pick subsets Wk characterized by particular eigenvalues of Sz and Lz. These
reductions in the size of the invariant subsets and the invariant blocks make it feasible to
generate symmetry-adapted basis sets automatically also in the case of highly excited
configurations. The use of symmetry-adapted basis sets leads to accurate calculations as
is illustrated in Tables 4.7-4.9.



E.8. INVARIANT SUBSETS BASEDON SUBSHELLS; CLASSIFICATION ACCORDING TOML ANDMS307

Table E.6: This table shows the multiplets generated by diagonalizing the energy-invariant
interelectron repulsion matrix T ′ for the 90×90 block the Hamiltonian based on neutral
lithium configurations corresponding to (1s)(3d)2, with Rν =

√
11/3. The reader can verify

that the sum of the degeneracies of the multiplets is 90. The energies shown are for neutral
lithium.

|λκ| term degen. energy

.270978 4F 28 –4.63798

.271649 2F 14 –4.63594

.278128 2D 10 –4.63526

.278998 4P 12 –4.61623

.279669 2P 6 –4.61359

.281871 2G 18 –4.61155

.297850 2S 2 –4.55650
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Table E.7: 3S excited state energies calculated with 78 Goscinskians, using the crude
relativistic correction described in the text. The calculation of similar tables for 1P, 3P,
1D, 3D, doubly excited autoionizing states, etc., is equally easy, rapid, and of comparable
accuracy. Tables are given in Chapter 4 in [Avery and Avery, 2006], but may easily be
reproduced using our programs, as shown in Tutorial 1 on [Avery and Avery, 2006a].

He Li+ Be2+ B3+ C4+ N5+

1s2s 3S –2.1737 –5.1085 –9.2957 –14.735 –21.427 –29.373
expt. –2.1750 –5.1109 –9.2983 –14.738 –21.429 –29.375

1s3s 3S –2.0683 –4.7509 –8.5459 –13.454 –19.476 –26.612
expt. –2.0685 –4.7522 –8.5480 –13.457 –19.478 –26.614

1s4s 3S –2.0364 –4.6365 –8.2999 –13.027 –18.820 –25.678
expt. –2.0363 –4.6373 –8.3015 –13.030 –18.822 –25.680

1s5s 3S –2.0226 –4.5859 –8.1896 –12.835 –18.522 –25.253
expt. –2.0224 –4.5862 –8.1905 –18.524 –25.254

1s6s 3S –2.0154 –4.5591 –8.1309 –12.732 –18.363 –25.024
expt. –2.0152 –4.5592 –18.364

1s7s 3S –2.0112 –4.5432 –8.096 –12.67 –18.267 –24.888
expt. –2.0109 –4.5431 –18.268

1s8s 3S –2.0085 –4.5330 –8.0736 –12.631 –18.206 –24.799
expt. –2.0082 –4.5328 –18.206

1s9s 3S –2.0067 –4.5261 –8.0583 –12.604 –18.164 –24.739
expt. -2.0064

1s10s 3S –2.0051 –4.5212 –8.0475 –12.585 –18.134 –24.696
expt. –2.0051
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Table E.8: 1S ground and excited state energies (in Hartrees) for the 2-electron isoelec-
tronic series. The basis set used consisted of 592 generalized Sturmians of the Goscinski
type, using the crude relativistic correction described in the text. The whole table was
computed approximately a second. Experimental values are taken from the NIST tables
[National Institute for Standards and Technology (NIST)] (http://physics.nist.gov/asd).

He Li+ Be2+ B3+ C4+

1s2 1S –2.8956 –7.2716 –13.649 –22.028 –32.412
expt. –2.9034 –7.2798 –13.657 –22.035 –32.416

1s2s 1S –2.1441 –5.0350 –9.1768 –14.571 –21.218
expt. –2.1458 –5.0410 –9.1860 –14.582 –21.230

1s3s 1S –2.0607 –4.7303 –8.5112 –13.405 –19.414
expt. –2.0611 –4.7339 –8.5183 –13.415 –19.425

1s4s 1S –2.0333 –4.6280 –8.2844 –13.005 –18.791
expt. –2.0334 –4.6299 –8.2891 –18.800

1s5s 1S –2.0221 –4.5858 –8.1889 –12.833 –18.520
expt. –2.0210 –4.5825 –18.513

1s6s 1S –2.0147 –4.5579 –8.129 –12.729 –18.359
expt. –2.0144 –4.5571

1s7s 3S –2.0109 –4.5426 –8.0951 –12.67 –18.281
expt. –2.0104 –4.5418

1s8s 3S –2.0083 –4.5326 –8.0732 –12.641 –18.26
expt. –2.0079

1s9s 3S –2.0065 –4.5258 –8.0583 –12.626 –18.203
expt. –2.0062

1s10s 3S –2.0049 –4.521 –8.0476 –12.602 –18.162
expt. –2.0050
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Table E.9: 1D excited state energies for the 2-electron isoelectronic series, compared with
experimental values taken from the NIST tables.

He Li+ Be2+ B3+ C4+ N5+

He Li+ Be2+ B3+ C4+ N5+

1s3d 1D –2.0555 –4.7218 –8.4990 –13.388 –19.387 –26.498
expt. –2.0554 –4.7225 –8.5012 –13.392 –19.396 –26.514

1s4d 1D –2.0312 –4.6246 –8.2801 –12.998 –18.779 –25.622
expt. –2.0311 –4.6252 –8.2824 –13.003 –18.788 –25.639

1s5d 1D –2.0200 –4.5797 –8.1790 –12.818 –18.497 –25.217
expt. –2.0198 –4.5801 –8.1807 –18.507 –25.234

1s6d 1D –2.0139 –4.5554 –8.1242 –12.721 –18.345 –24.997
expt. –2.0137 –4.5557 –18.354

1s7d 1D –2.0102 –4.5407 –8.0912 –12.662 –18.253 –24.865
expt. –2.0100 –4.5409 –18.262

1s8d 1D –2.0078 –4.5311 –8.0699 –12.624 –18.194 –24.779
expt. –2.0076 –4.5314 –18.202

1s9d 1D –2.0062 –4.5246 –8.0552 –12.598 –18.153 –24.720
expt. –2.0060

1s10d 1D –2.0050 –4.5199 –8.0447 –12.579 –18.124 –24.678
expt. –2.0048

1s11d 1D –2.0041 –4.5165 –8.0370 –12.566 –18.102 –24.647
expt. –2.0035

1s12d 1D –2.0032 –4.5139 –8.0311 –12.555 –18.086 –24.624
expt. –2.0033
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Figure E.7: Here the lowest 3S energies of the heliumlike isoelectronic series are divided by
Z2. The lower line is corrected for relativistic effects. The dots are experimental values.

E.9 An atom surrounded by point charges

For a heavy atom surrounded by lighter atoms (ligands), the effect of the ligands is some-
times approximated by considering the atom to be surrounded by an array of point charges
with an appropriate symmetry. The potential experienced by such an atom is

V (x) = V0(x) + V ′(x) + V ′′(x) (E.73)

where V0 is the nuclear attraction potential

V0(x) = −
N∑

i=1

Z0

ri
(E.74)

and V ′ is the interelectron repulsion potential

V ′(x) =
N∑

j>i

N∑

i=1

1

rij
(E.75)

while V ′′ (the “crystal field”) expresses the effect of a set of charges qa located at the
positions Xa:

V ′′(x) = −
N∑

i=1

∑

a

qa
|xi −Xa|

(E.76)

The generalized Sturmian secular equation analogous to (E.35) then becomes
∑

ν

[
δν′,νZRν + T ′ν′,ν + T ′′ν′,ν − pκδν′,ν

]
Cν,κ = 0 (E.77)
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where

T ′′ν′,ν ≡ −
1

pκ
〈Φ∗ν′ |V ′′|Φν〉 (E.78)

In order to evaluate T ′′ν′,ν we must first calculate one-electron matrix elements of the form

v′′µ1,µ2 ≡
∫
d3x χ∗µ1(x)χµ2(x)

∑

a

qa
|x−Xa|

=
∑

a

∑

l

qa

∫
d3xi χ

∗
µ1

(x)χµ2(x)

(
rl<
rl+1
>

)

a

Pl(x̂ · X̂a)

=
∑

a

∑

l

qa

∫ ∞

0

dr r2

(
rl<
rl+1
>

)

a

Rn1,l1(r)Rn2,l2(r)

×
∫
dΩ Y ∗l1,m1

(x̂)Yl2,m2(x̂)Pl(x̂ · X̂a) (E.79)

where

(
rl<
rl+1
>

)

a

≡





rl/Rl+1
a r < Ra

Rl
a/r

l+1 Ra < r
(E.80)

If the points Xa are all equidistant from the central atom and if the charges are all equal,
then equation (E.79) can be rewritten in the form:

v′′µ1,µ2 =
∑

a

∑

l

4πqa
2l + 1

∫ ∞

0

dr r2

(
rl<
rl+1
>

)

a

Rn1,l1(r)Rn2,l2(r)

×Y ∗l,m(X̂a)

∫
dΩ Y ∗l1,m1

(x̂)Yl2,m2(x̂)Yl,m(x̂)

≡
∑

l

Fl
∑

a

Y ∗l,m(X̂a)

∫
dΩ Y ∗l1,m1

(x̂)Yl2,m2(x̂)Yl,m(x̂)

(E.81)

where

Fl ≡
4πqa

2l + 1

∫ ∞

0

dr r2

(
rl<
rl+1
>

)

a

Rn1,l1(r)Rn2,l2(r)

(E.82)

Once we are in possession of v′′µ1,µ2 , the matrix element T ′′ν1,ν2 can be evaluated by means
of the generalized Slater-Condon rules discussed in Appendix D, Section D.1. For fixed
angular geometry, the matrix T ′′ν1,ν2 turns out to be a function of the parameters

sa ≡ pκRa ≡ pκ|Xa| (E.83)
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where |Xa| is the distance of the ath charge qa from the central atom. The generalized
Sturmian secular equations (E.77) can be solved as follows: We begin by picking values
of sa The secular equation (E.77) is then solved, yielding roots pκ for the ground state
and the excited states. The corresponding values of |Xa| are then known. This can be
repeated for a number of sa values, yielding solutions as functions of the distances |Xa|.
As an example, we can consider an atom surrounded by 8 equal point charges q at the
positions

X̂1 = (+1,+1,+1)/
√

3 X̂5 = (+1,−1,−1)/
√

3

X̂2 = (−1,+1,+1)/
√

3 X̂6 = (−1,+1,−1)/
√

3

X̂3 = (+1,−1,+1)/
√

3 X̂7 = (−1,−1,+1)/
√

3

X̂4 = (+1,+1,−1)/
√

3 X̂8 = (−1,−1,−1)/
√

3 (E.84)

which has cubic symmetry. We can also discuss the effect of a square-planar array

X̂1 = (+1, 0, 0) X̂3 = (0,+1, 0)

X̂2 = (−1, 0, 0) X̂4 = (0,−1, 0) (E.85)

a linear array:

X̂1 = (0, 0,+1) X̂2 = (0, 0,−1) (E.86)

a trigonal array:

X̂1 = (2
√

2/3, 0,−1/3)

X̂2 = (−
√

2/3,
√

6/3,−1/3)

X̂3 = (−
√

2/3,−
√

6/3,−1/3) (E.87)

and a tetrahedral array

X̂1 = (0, 0, 1)

X̂2 = (2
√

2/3, 0,−1/3)

X̂3 = (−
√

2/3,
√

2/3,−1/3)

X̂4 = (−
√

2/3,−
√

2/3,−1/3) (E.88)

The presence of a symmetrical set of charges surrounding a central atom reduces the
symmetry of the system: Instead of being invariant under the the full group of rotations
about the central atom (as well as rotations in spin space) the system is now invariant
only under a restricted group of rotations. However, subsets of configurations that are
closed under the operations of the full rotation group, are also closed under the more
restricted group of rotations. Therefore, if we are willing to have invariant subsets of
configurations that are larger than minimal, we can choose them almost as though the
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perturbing surrounding charges were not there. Thus the invariant subsets in the perturbed
case can be established by following the prescription:

ν = (a; b)

a = (MS, (n, l), (n
′, l′), (n′′, l′′), . . .)

b = ((m,ms), (m
′,m′s), (m

′′,m′′s), . . .)

Wa = (|Φa,b1〉, |Φa,b2〉, |Φa,b3〉, . . .) (E.89)

The symmetry-adapted basis functions found by diagonalizing the invariant blocks can be
used as basis functions for a more ambitious configuration interaction calculation. For
example, let us think of a neutral lithium atom, surrounded by a square planar array of
point charges. To make the example more specific, let us think of the set of configurations
characterized by

(1s)2(3d)

(
10
1

)
(E.90)

This set has 10 members, and they can be used as a basis for solving the generalized
Sturmian secular equations in the presence of the square-planar array of point charges. In
the absence of the charges, the 10 configurations are members of a 2D multiplet, and in
the large-Z approximation its energy is

Eκ = −1

2
(ZRν − |λ|)2 = −1

2
(
√

19− .58281)2 = −7.1294 (E.91)

This corresponds to the effective charge

Q =
pκ
Rν

=
ZRν − |λ|

Rν

= 2.5989 (E.92)

where

Rν =

√
1

12
+

1

12
+

1

32
=

√
19

3
|λ| = .58281 (E.93)

In order to calculate T ′′ and find the effect of the point charges (which we treat here as a
small perturbation), we need to evaluate the radial integrals:

∫ ∞

0

dr r2

(
rl<
rl+1
>

)

a

|R3,2(r)|2 =





.19193 l = 0

.10363 l = 2

.06826 l = 4

(E.94)

with |Xa| = 5 and

R3,2(r) =
2Q7/2

81

√
2

15
r2e−Qr/3 (E.95)
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The angular integrals needed for constructing T ′′ are

∑

a

∫
dΩ Y ∗2,m1

(x̂)Y2,m2(x̂)P0(x̂ · X̂a) = 4δm1,m2

∑

a

∫
dΩ Y ∗2,m1

(x̂)Y2,m2(x̂)P1(x̂ · X̂a) = 0

∑

a

∫
dΩ Y ∗2,m1

(x̂)Y2,m2(x̂)P3(x̂ · X̂a) = 0 (E.96)

and
∑

a

∫
dΩ Y ∗2,m1

(x̂)Y2,m2(x̂)P2(x̂ · X̂a)

=




4

7
0 0 0 0

0 − 2

7
0 0 0

0 0 − 4

7
0 0

0 0 0 − 2

7
0

0 0 0 0
4

7




(E.97)

while
∑

a

∫
dΩ Y ∗2,m1

(x̂)Y2,m2(x̂)P4(x̂ · X̂a)

=




1

14
0 0 0

5

6

0 − 2

7
0 0 0

0 0
3

7
0 0

0 0 0 − 2

7
0

5

6
0 0 0

1

14




(E.98)
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B1
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E

Figure E.8: This diagram shows schematically the splitting of the 2D1/2 multiplet
of neutral lithium discussed above in the field of a square-planar array of point
charges. The 2D−1/2 multiplet which is similarly split is not shown. Besides
being split by the presence of the charges, the multiplet is also displaced in
energy, as is the lithium ground state.

Eg

T2 g

Figure E.9: This figure shows the same multiplet as Figure 4.8, but the splitting
is due to an octohedral array of point charges.
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Figure E.10: This figure shows the angular dependence of one of the T1u orbitals
produced when degenerate f-orbitals are split by the presence of an octohedral
arrangement of point charges. The T1u irreducible representation of the group
Oh is a 3-dimensional representation. The other two components are shown in
Figure 4.11.
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Figure E.11: This figure shows the angular dependence of the remaining two T1u

orbitals. Both in this figure and in Figure 4.10, the vertical axis represents θ
and the horizontal axis represents φ.



Appendix F

MOLECULAR ORBITALS BASED
ON STURMIANS

F.1 The one-electron secular equation

Molecular orbitals may be represented as superpositions of Coulomb Sturmian basis func-
tions (Appendix D) centered on the nuclei of a molecule. These basis functions are an exam-
ple of Exponential-Type Orbitals (ETO’s) [Harris and Michels, 1967], [Pinchon and Hoggan 2007],
[Pinchon and Hoggan, 2009], [Weatherford, 1982], and calculations using them can poten-
tially be much more accurate than calculations based on Gaussians.

Gaussian basis functions have serious drawbacks, since very many of them are needed to
approximate the molecular orbitals, and since the cusp at the nucleus is never adequately
represented. Furthermore, Gaussian basis functions cannot accurately represent the expo-
nential decay of the orbitals at large distances from the nuclei. Thus while the mainstream
effort of quantum chemistry today follows the path of Gaussian technology, there exists a
small group of researchers who struggle with the difficult mathematical problems involved
in using exponential-type orbitals (ETO’s) as basis functions, and we hope that the present
chapter will make a contribution to this effort. We will see that the automatic scaling prop-
erties associated with the Generalized Sturmian Method have advantages also in the case of
molecules, and that molecular orbitals based on many-center Coulomb Sturmians have ad-
vantages over other ETO’s with respect to the ease of evaluation of interelectron repulsion
integrals.

We will first consider the use of Coulomb Sturmian basis functions located on the
different atoms of a molecule to solve the 1-electron molecular Schrödinger equation, an
endeavor which was pioneered by C.E, Wulfman, B. Judd, T. Koga, V. Aquilanti and
others [Shibuya and Wulfman, 1965], [Wulfman, 2011], [Judd, 1975], [Koga et al., 1984]-
[Koga et al., 1991], [Aquilanti et al., 1996],[Aquilanti et al., 1997]. These authors solved
the Schrödinger equation in momentum space, but here we will use a direct-space treatment
to reach the same results. In this approach to molecular orbital theory, we search for

319
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solutions to the one-electron Schrödinger equation[
−1

2
∇2 + v(x)− εζ

]
ϕζ(x) = 0 (F.1)

where v(x) is the Coulomb attraction potential of the nuclei:

v(x) = −
∑

a

Za
|x−Xa|

(F.2)

cWe will approximate the molecular orbitals ϕζ(x) by superpositions of Coulomb Sturmian
atomic orbitals centered on the various atoms of the molecule. To do this it is convenient
to introduce a notation where τ stands for a set of four indices, the first three being the
quantum numbers of a one-electron Coulomb Sturmian basis function of the type discussed
in Appendix B, while the final index, a, is the index of the nucleus on which the atomic
orbital is centered:

τ ≡ (n, l,m, a) (F.3)

In this notation we can write

χτ (x) ≡ χnlm(x−Xa) (F.4)

A molecular orbital is then represented by a superposition of the form

ϕζ(x) =
∑

nlma

χnlm(x−Xa)Cτ,ζ ≡
∑

τ

χτ (x)Cτ,ζ (F.5)

The normalization condition for the molecular orbitals is

1 =

∫
d3xj ϕ

∗
ζ(xj)ϕζ(xj) =

∑

τ ′

∑

τ

C∗τ ′,ζmτ ′,τCτ,ζ (F.6)

where

mτ ′,τ ≡
∫
d3xj χ

∗
τ ′(xj)χτ (xj) (F.7)

is the matrix of many-center Sturmian overlap integrals. The matrixmτ ′,τ may be evaluated
using the properties of hyperspherical harmonics, and we will discuss below the details of
how this may be done.

Coulomb Sturmian basis functions are discussed in detail in Appendix B. They have
exactly the same form as the familiar hydrogenlike atomic orbitals,

χnlm(x) = Rn,l(r)Ylm(θ, φ) (F.8)

except in the radial part, Rn,l(r), the factor Z/n is replaced by a constant, k. The first
few Coulomb Sturmian radial functions are

R1,0(r) = 2k3/2e−kr

R2,0(r) = 2k3/2(1− kr)e−kr

R2,1(r) =
1√
3

2k3/2kr e−kr

R3,1(r) = 2k3/3

(
1− 2kr +

2k2r2

3

)
e−kr (F.9)
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The reader can verify that these are precisely the same as hydrogenlike atomic orbitals with
the replacement Z/n→ k. We now substitute the superposition (F.5) into the one-electron
Schrödinger equation (F.1). This gives us:

∑

nlma

[
−1

2
∇2 +

1

2
k2 + v(x)

]
χnlm(x−Xa)Cτ,ζ

≡
∑

τ

[
−1

2
∇2 +

1

2
k2 + v(x)

]
χτ (x)Cτ,ζ = 0 (F.10)

with

εζ ≡ −
1

2
k2 (F.11)

where each of the Coulomb Sturmian atomic orbitals χτ (x) ≡ χnlm(x−Xa) obeys a one-
electron Schrödinger equation of the form

[
−1

2
∇2 +

1

2
k2 − nk

|x−Xa|

]
χnlm(x−Xa) = 0 (F.12)

Taking the scalar product of (F.10) with a conjugate function in our basis set, we obtain

∑

τ

∫
d3xχ∗τ ′(x)

[
−1

2
∇2 +

k2

2
+ v(x)

]
χτ (x)Cτ,ζ = 0 (F.13)

With the notation

Wτ ′,τ ≡ −
1

k

∫
d3xχ∗τ ′(x)v(x)χτ (x) (F.14)

and

Sτ ′,τ ≡
1

k2

∫
d3xχ∗τ ′(x)

(
−1

2
∇2 +

k2

2

)
χτ (x)

=
n

k

∫
d3xχ∗τ ′(x)

1

|x−Xa|
χτ (x) (F.15)

we obtain a secular equation of the form
∑

τ

[Wτ ′,τ − kSτ ′,τ ]Cτ,ζ = 0 (F.16)

We can call Wτ ′,τ the Wulfman integrals to honor the pioneering contributions of Prof.
C.E. Wulfman. The integrals Sτ ′,τ are called Shibuya-Wulfman integrals [Avery, 1989],
[Avery, 2000], [Avery and Avery, 2006], [Judd, 1975], [Shibuya and Wulfman, 1965], and
methods for their evaluation are discussed below. It can be shown [Koga and Matsuhashi, 1987]
that the matrix elements of the many-center potential Wτ ′,τ can be expressed in terms of
the Shibuya-Wulfman integrals by means of the sum rule

Wτ ′,τ =

√
n′n

Za′Za

∑

τ ′′

Kτ ′,τ ′′Kτ ′′,τ (F.17)
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where

Kτ ′,τ ≡
√
Za′Za
n′n

Sτ ′,τ (F.18)

With the help of this sum rule, the secular equations (F.16) can be rewritten in the form

∑

τ

[∑

τ ′′

Kτ ′,τ ′′Kτ ′′,τ − kKτ ′,τ

]
C ′τ,ζ = 0 (F.19)

with

C ′τ,ζ =

√
Za
n
Cτ,ζ (F.20)

Now suppose that we have solved the secular equation

∑

τ

[Kτ ′,τ − kδτ ′,τ ]C ′τ,ζ (F.21)

The values of k and C ′τ,ζ thus obtained will also be solutions to (F.19). To see this, we
perform the sum over τ ′′ in (F.19), making use of (F.21):

∑

τ

[∑

τ ′′

Kτ ′,τ ′′Kτ ′′,τ − kKτ ′,τ

]
C ′τ,ζ

= k
∑

τ

[∑

τ ′′

Kτ ′,τ ′′δτ ′′,τC
′
τ,ζ − kδτ ′,τ

]
C ′τ,ζ

= k
∑

τ

[Kτ ′,τ − kδτ ′,τ ]C ′τ,ζ = 0 (F.22)

Since we have two forms of the molecular Sturmian secular equation, (F.16) and (F.21), one
might ask which form is the best. The answer is that if the number of basis functions used
is small, (F.16) give the most accurate results. However, particularly for small values of the
parameter S, equation (F.21) suffers from problems of overcompleteness when the number
of basis functions is increased. By contrast, as Monkhorst and Jeziorski have pointed out
[Monkhorst and Jeziorski, 1979], equation (F.16) has no such problems, and therefore it is
the method of choice when the basis set used is very large or when S is small. We can
call the matrix Kτ ′,τ the Koga matrix to honor the contributions of Prof. T. Koga and his
group.
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Figure F.1: Energies of the ground state and excited states of H+
2 , calculated by

solving equation (F.21). The energies are expressed in Hartrees and are given
as a function of the internuclear separation R, expressed in Bohrs.
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Figure F.2: A closer view of the excited state energies of H+
2 . In the united-atom

limit, these energies approach those of the excited states of He+, i.e., 4/(2n2).
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Figure F.3: The ground state molecular orbital of the H+
2 ion at nuclear separa-

tion R=1.21702 Bohrs (S=2, k=1.64335). In the united-atom limit, k=2.
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Figure F.4: The same state at nuclear separation 2.98216 Bohrs (S=4,
k=1.34131).
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Figure F.5: Here the internuclear distance has been increased to 5.13325 Bohrs
(S=6, k=1.16885).
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Figure F.6: The same state with nuclear separation 7.50577 Bohrs (S=8,
k=1.06585). As the nuclear separation increases, k approaches 1.
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F.2 Shibuya-Wulfman integrals and Sturmian over-

lap integrals evaluated in terms of hyperpherical

harmonics

The Shibuya-Wulfman integrals Sτ ′,τ defined by equation (F.15) as well as the molecular
Sturmian overlap integrals

mτ ′,τ ≡
∫
d3x χ∗τ ′(x)χτ (x) (F.23)

can conveniently be evaluated in reciprocal space. Let us first consider the Sturmian
overlap integrals. Using the fact that

mτ ′,τ ≡
∫
d3x χ∗τ ′(x)χτ (x) =

∫
d3p χt∗τ ′(p)χtτ (p) (F.24)

where, if we let

µ ≡ (n, l,m) (F.25)

while τ ≡ (n, l,m, a), then

χtτ (p) ≡ 1

(2π)3/2

∫
d3x e−ip·xχτ (x) = e−ip·Xaχtµ(p)

χt∗τ ′(p) ≡ 1

(2π)3/2

∫
d3x eip·xχ∗τ ′(x) = eip·Xa′χt∗µ (p) (F.26)

We thus obtain

mτ ′,τ =

∫
d3p eip·Rχt∗µ′(p)χtµ(p) (F.27)

where

R ≡ Xa′ −Xa (F.28)

We now make use of V. Fock’s relationship [Fock, 1935], [Fock, 1958]

χtµ(p) = M(p)Yn−1.l.m(û) (F.29)

where

M(p) ≡ 4k5/2

(k2 + p2)2
(F.30)

In equation (F.29), û is a 4-dimensional unit vector that defines Fock’s projection of mo-
mentum space onto the surface of a 4-dimensional hypersphere.

û = (u1, u2, u3, u4) =

(
2kp1

k2 + p2
,

2kp2

k2 + p2
,

2kp3

k2 + p2
,
k2 − p2

k2 + p2

)
(F.31)
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while Yµ(û) is a 4-dimensional hyperspherical harmonic defined by:

Yλ,l,m(û) = Nλ,lC1+l
λ−l(u4)Yl,m(u1, u2, u3) (F.32)

where

Nλ,l = (−1)λil(2l)!!

√
2(λ+ 1)(λ− l)!
π(λ+ l + 1)!

(F.33)

is a normalizing constant while

Cα
j (u4) =

[j/2]∑

t=0

(−1)tΓ(n+ α− t)
t!(j − 2t)!Γ(α)

(2u4)j−2t (F.34)

is a Gegenbauer polynomial, and where Yl,m is a familiar 3-dimensional spherical harmonic.
The first few hyperspherical harmonics are shown in Table 5.1. The index λ corresponds
to n− 1 so that the Fourier transform of χ1,0,0(x) is given by χt1,0,0(p) = M(p)Y0,0,0(û) =

M(p)/(
√

2π), and so on. Substituting (F.29) into (F.27), we obtain

mτ ′,τ =

∫
d3p eip·RM(p)2Y ∗n′−1,l′,m′(û)Yn−1,l,m(û)

≡
∫
d3p eip·RM(p)2Y ∗µ′(û)Yµ(û) (F.35)

(Here, and throughout the book, a unit vector is indicated by a “hat”.) One can show
[Avery, 1989] that the Shibuya-Wulfman integrals can be written in a similar form:

Sτ ′,τ =

∫
d3p eip·R

(
2k

k2 + p2

)3

Y ∗µ′(û)Yµ(û) (F.36)

One can also show [Caligiana, 2003] that

∫
d3p eip·R

(
2k

k2 + p2

)3

Y ∗µ (û) = (2π)3/2fn,l(S)Yl,m(Ŝ) (F.37)

where Yl,m is an ordinary 3-dimensional spherical harmonic and where

S = {Sx, Sy, Sz} ≡ kR S = k|R| (F.38)

The function fn,l(S) is defined by

k3/2fn,l ≡ Rn,l −
1

2

√
(n− l)(n+ l + 1)

n(n+ 1)
Rn+1,l

−1

2

√
(n+ l)(n− l − 1)

n(n− 1)
Rn−1,l (F.39)
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where Rn,l is the radial function of the Coulomb Sturmians given in equation (F.9), and
where

Rn−1,l ≡ 0 if l > n− 1 (F.40)

Similarly, one can show [Caligiana, 2003] that

∫
d3p eip·RM(p)2Yµ(û) = (2π)3/2gn,l(S)Yl,m(Ŝ) (F.41)

where

gn,l ≡ fn,l −
1

2

√
(n− l)(n+ l + 1)

n(n+ 1)
fn+1,l

−1

2

√
(n+ l)(n− l − 1)

n(n− 1)
fn−1,l (F.42)

where we define
fn−1,l ≡ 0 if l > n− 1 (F.43)

The first few values of fn,l(S) and gn,l(S) are shown in Table 5.2.
Equations (F.37) and (F.41) are respectively identical with the Shibuya Wulfman in-

tegrals and the molecular Sturmian overlap integrals except that they contain only one
4-dimensional hyperspherical harmonic instead of a product of two. Thus the problem of
evaluating both Sτ ′,τ and mτ ′,τ reduces to the problem of evaluating the coefficients

cµ′′;µ′,µ =

∫
dΩ4Y

∗
µ′′(û)Y ∗µ′(û)Yµ(û) (F.44)

These coefficients can readily be pre-evaluated once and for all using the hyperangular
integration theorems discussed in Appendix C, and they can be stored as a large but very
sparse matrix. We then obtain the relationships:

Y ∗µ′(û)Yµ(û) =
∑

µ′′

Yµ′′(û)cµ′′;µ′,µ (F.45)

Sτ ′,τ = (2π)3/2
∑

µ′′

Yl′′,m′′(Ŝ)fn′′,l′′(S)cµ′′;µ′,µ (F.46)

and
mτ ′,τ = (2π)3/2

∑

µ′′

Yl′′,m′′(Ŝ)gn′′,l′′(S)cµ′′;µ′,µ (F.47)

Similar methods can be used to calculate the Wulfman integrals Wτ ′,τ [Avery, 2000]. The
first few Shibuya-Wulfman integrals are shown in Table 5.3. We can notice that when
S = 0 the diagonal elements are 1, while the off-diagonal elements vanish. The first few
displaced Coulomb Sturmian overlap integrals mτ ′,τ are shown in Table 5.4.
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Table F.1: gn,l(S) and fn,l(S), where S ≡ k|Xa′ −Xa|. The functions gn,l(S) and fn,l(S)
appear respectively in the two-center overlap integrals and the Shibuya-Wulfman integrals.

n l gn,l(S) fn,l(S)

1 0
e−S

(
3 + 3S + S2

)

3
e−S (1 + S)

2 0 −1

6
e−S

(
3 + 3S + 2S2 + S3

)
−2

3
e−SS2

2 1
e−SS

(
3 + 3S + S2

)

6
√

3

2e−SS(1 + S)

3
√

3

3 0
1

15
e−SS4 1

3
e−SS2(−2 + S)

3 1 −e−SS3(1 + S)

15
√

2

e−SS(1 + S − S2)

3
√

2

3 2
e−SS2(3 + 3S + S2)

15
√

10

e−SS2(1 + S)

3
√

10
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Table F.2: This table shows the first few Shibuya-Wulfman integrals Sτ ′,τ , as functions of
S ≡ k(Xa′ −Xa), with S ≡ |S| and S ≡ (S sin θ cosφ, S sin θ sinφ, S cos θ). The integrals
were generated by means of equation (F.46).

τ ′ τ = (1, 0, 0, a) τ = (2, 0, 0, a)

(1, 0, 0, a′) e−S(1 + S) −2

3
e−SS2

(2, 0, 0, a′) −2

3
e−SS2 1

3
e−S(3 + 3S − 2S2 + S3)

(2, 1,−1, a′) −
√

2

3
e−SS(1 + S) sin θ eiφ

1

3
√

2
e−SS(−1− S + S2) sin θ eiφ

(2, 1, 0, a′) −2

3
e−SS(1 + S) cos θ

1

3
e−SS(−1− S + S2) cos θ

(2, 1, 1, a′)

√
2

3
e−SS(1 + S) sin θ e−iφ − 1

3
√

2
e−SS(−1− S + S2) sin θ e−iφ
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Table F.3: The first few overlap integrals mτ ′,τ ≡
∫
d3xχ∗τ ′(x)χτ (x) between displaced

Coulomb Sturmians. The definitions of S, θ and φ are the same as in Table 5.3. The
integrals were evaluated by means of equation (F.47).

τ ′ τ = (1, 0, 0, a) τ = (2, 0, 0, a)

(1, 0, 0, a′)
1

3
e−S(3 + 3S + S2) −1

6
e−S(3 + 3S + 2S2 + S3)

(2, 0, 0, a′) −1

6
e−S(3 + 3S + 2S2 + S3)

1

15
e−S(15 + 15S + 5S2 + S4)

(2, 1,−1, a′) − 1

6
√

2
e−SS(3 + 3S + S2) sin θ eiφ

1

15
√

2
e−SS3(1 + S) sin θ eiφ

(2, 1, 0, a′) −1

6
e−SS(3 + 3S + S2) cos θ

1

15
e−SS3(1 + S) cos θ

(2, 1, 1, a′)
1

6
√

2
e−SS(3 + 3S + S2) sin θ e−iφ − 1

15
√

2
e−SS3(1 + S) sin θ e−iφ
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F.3 Molecular calculations using the isoenergetic con-

figurations

We now introduce N -electron configurations which are Slater determinants of the form:

|Φν〉 = |ϕζϕζ′ϕζ′′ · · · | ≡
1√
N !

∣∣∣∣∣∣∣∣∣

ϕζ(x1) ϕζ′(x1) ϕζ′′(x1) · · ·
ϕζ(x2) ϕζ′(x2) ϕζ′′(x2) · · ·
ϕζ(x3) ϕζ′(x3) ϕζ′′(x3) · · ·

...
...

...

∣∣∣∣∣∣∣∣∣
(F.48)

where the molecular spin-orbitals ϕζ(x) satisfy
[
−1

2
∇2
j +

k2

2
+ βνv(xj)

]
ϕζ(xj) = 0 v(xj) =

∑

a

Za
|xj −Xa|

(F.49)

Since the individual molecular orbitals satisfy (F.49), the configurations |Φν〉 are solutions
to the separable N -electron equation:

N∑

j=1

[
−1

2
∇2
j +

k2

2
+ βνv(xj)

]
|Φν〉 = 0 (F.50)

which can also be written in the form:
[

N∑

j=1

(
−1

2
∇2
j +

k2

2

)
+ βνV0(x)

]
|Φν〉

=

[
−1

2

N∑

j=1

∇2
j + βνV0(x)− Eκ

]
|Φν〉 = 0 (F.51)

where x ≡ (x1,x2, . . . ,xN) and

Eκ = −
N∑

j=1

k2

2
= −Nk

2

2
(F.52)

and where

V0(x) ≡
N∑

j=1

v(xj) =
N∑

j=1

∑

a

Za
|xj −Xa|

(F.53)

Comparing (F.51) with (E.6), we can see that they are the same. Thus the isoenergetic
solutions to the approximate N -electron Schrödinger equation (F.51) form a generalized
Sturmian basis set. We would like to use these configurations to build up solutions to the
N -electron Schrödinger equation

[
N∑

j=1

(
−1

2
∇2
j +

k2

2

)
+ V (x)

]
|Ψκ〉 = 0 (F.54)
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with

V (x) = V0(x) +
N∑

i>j

1

rij
(F.55)

Thus we write
|Ψκ〉 ≈

∑

ν

|Φν〉Bνκ (F.56)

Substituting this into the N -electron Schrödinger equation, and taking the scalar product
with a conjugate configuration, we obtain the secular equations:

∑

ν

〈Φν′ |
[

N∑

j=1

(
−1

2
∇2
j +

k2

2

)
+ V (x)

]
|Φν〉Bνκ = 0 (F.57)

We now introduce a k-independent matrix representing the total potential based on the
configurations |Φν〉:

T
(N)
ν′ν ≡ −

1

k
〈Φν′|V (x)|Φν〉 (F.58)

and another k-independent matrix

S
(N)
ν′ν ≡

1

k2
〈Φ∗ν′|

N∑

j=1

(
−1

2
∇2
j +

k2

2

)
|Φν〉 (F.59)

In terms of these matrices, the secular equations become:

∑

ν

[
T

(N)
ν′ν − kS

(N)
ν′ν

]
Bνκ = 0 (F.60)

Solving equation (F.60), we obtain k for each state κ and thus the energy Eκ = −Nk2

2
. For

a given state κ, the value of k then determines the weighting factors βν1 , βν2 , . . . needed to
make each configuration |Φν1〉, |Φν2〉, . . . correspond to the same energy Eκ.

In order to build the N -electron matrices T
(N)
ν′ν and S

(N)
ν′ν and solve equation (F.60), we

must first obtain the coefficients Cτζ by solving (F.16) or (F.21). In the case of diatomic
molecules, we begin by picking a value of the parameter S = kR, where R is the interatomic
distance and k is the exponent of the Coulomb Sturmian basis set. Neither R nor k is known
at this point, but only their product S. As we shall see below, for the diatomic case, all
of the integrals involved in equations (F.16) and (F.21) are pure functions of S. Having
chosen S, we can thus solve the one-electron secular equations and obtain the coefficients
Cτζ and the spectrum of ratios k/βν . We are then able to solve equation F.60, which gives
us a spectrum of k-values, and thus energies −Nk2/2, and the eigenvectors Bνκ. From a
k-value, we also get the unscaled distance R = S/k. We repeat the procedure for a range
of S-values and interpolate to find the solutions as functions of R.

In the case of polyatomic molecules, one can choose a set of angles between the nuclei;
these are left fixed under scaling of the coordinate system. The procedure is then similar
to that described for the diatomic case.



334 QUANTUM THEORY

F.4 Building T
(N)
ν′ν and S

(N)
ν′ν from 1-electron compo-

nents

We have already discussed how the matrix of many-center Sturmian overlap integrals

mτ ′τ ≡
∫
d3xj χ

∗
τ ′(xj)χτ (xj) (F.61)

may be evaluated using the properties of hyperspherical harmonics (F.47). The matrix mτ ′τ

is needed in order to normalize the molecular orbitals ϕζ(xj), the normalization condition
on the coefficients Cτ,ζ being

1 =

∫
d3xj ϕ

∗
ζ(xj)ϕζ(xj) =

∑

τ ′

∑

τ

C∗τ ′,ζmτ ′,τCτ,ζ (F.62)

Having performed the normalization, we then need to transform the nuclear attraction
matrix elements Wτ ′τ to a representation based on the molecular orbitals:

ṽζ′ζ ≡
∫
d3xj ϕ

∗
ζ′(xj)v(xj)ϕζ(xj) = −k

∑

τ ′

∑

τ

C∗τ ′ζ′Wτ ′τCτζ (F.63)

Once we are in possession of the 1-electron matrix elements ṽζ′ζ , we can evaluate

T
0,(N)
ν′ν ≡ −1

k
〈Φ∗ν′|V0(x)|Φν〉 (F.64)

by means of the Slater-Condon rules. Because of the potential-weighted orthonormality
relations obeyed by generalized Sturmian basis sets (Appendix B), we expect the matrix

T
0,(N)
ν′ν to be diagonal. We next transform the matrix of Shibuya-Wulfman integrals to a

representation based on the molecular orbitals:

S̃ζ′ζ ≡
∑

τ ′

∑

τ

C∗τ ′ζ′§τ ′τCτζ (F.65)

From these 1-electron matrix elements, the N -electron matrix S
(N)
ν′ν can be constructed

with the help of the Slater-Condon rules. Finally we must deal with the difficult term

T
′(N)
ν′ν ≡ −

1

k
〈Φ∗ν′ |

N∑

i>j

1

rij
|Φν〉 (F.66)

which is a k-independent matrix representing the effects of interelectron repulsion, and this
will be discussed in the next section.
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F.5 Interelectron repulsion integrals for molecular Stur-

mians from hyperspherical harmonics

We will now show that just as the theory of hyperspherical harmonics can be used to
facilitate the calculation of Shibuya-Wulfman and molecular Sturmian overlap integrals,
it also provides a method for very rapid calculation of the most important interelectron
repulsion integrals involving molecular Sturmians. We again make use of momentum space:

Let ρµ1,µ2(x−Xa) and ρµ3,µ4(x
′−Xa′) be two electron density distributions, centered re-

spectively on nuclei at the positions Xa and Xa′ . Then the interelectron repulsion between
them is given by the integral:

Jµ1,µ2,µ3,µ4 =

∫
d3x

∫
d3x′ρµ1,µ2(x−Xa)

1

|x− x′|ρµ3,µ4(x
′ −Xa′) (F.67)

If we introduce the Fourier transform representation

1

|x− x′| =
1

2π2

∫
d3p

1

p2
e−ip·(x−x

′) (F.68)

we can rewrite Jµ1,µ2,µ3,µ4 in the form

Jµ1,µ2,µ3,µ4 = 4π

∫
d3p

1

p2
eip·Rρtµ1,µ2(p)ρtµ3,µ4(−p) (F.69)

where R = Xa′ −Xa and

ρtµi,µj(p) =
1

(2π)3/2

∫
d3x ρµi,µj(x)e−ip·x (F.70)

Now let Rn,l(2r) be a Coulomb Sturmian radial function with r replaced by 2r, and we let
g(r) be any function of r. From the completeness property of Sturmian basis sets we know
that it is possible to make an expansion of the form

g(r) =
∑

n

anRn,l(2r) (F.71)

and from the potential-weighted orthonormality relations (D.11) it follows that the expan-
sion coefficients will be given by

an =
n

2

∫ ∞

0

dr r Rn,l(2r)g(r) (F.72)

We now let the density be composed of a product of two Coulomb Sturmian basis functions:

ρµ1,µ2(x) = χ∗µ1(x)χµ2(x) = Rn1,l1(r)Rn2,l2(r)Y
∗
l1,m1

(x̂)Yl2,m2(x̂) (F.73)
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If we make the expansion

ρµ1,µ2(x) =
∑

µ′′

Rn′′,l′′(2r)Yl′′,m′′(x̂) Cµ′′;µ1,µ2 ≡
∑

µ′′

χµ′′(2x) Cµ′′;µ1,µ2 (F.74)

then the coefficients in the expansion will be given by

Cµ′′;µ1,µ2 =
n′′

2

∫ ∞

0

dr r Rn′′,l′′(2r)Rn1,l1(r)Rn2,l2(r)

×
∫
dΩ3 Y

∗
l′′,m′′(x̂)Y ∗l1,m1

(x̂)Yl2,m2(x̂) (F.75)

Like the coefficients cµ′′;µ′,µ, the coefficients Cµ′′;µ′,µ form a large but very sparse matrix
which can be pre-calculated once and for all and stored. The series in (F.74) terminates
and the expansion is exact. Making use of the relationships (F.73) and (F.74), we obtain
the result

Jµ1,µ2,µ3,µ4 =

∫
d3x

∫
d3x′ρµ1,µ2(x−Xa)

1

|x− x′|ρµ3,µ4(x
′ −Xa′)

=
∑

µ′,µ

Jµ′,µCµ′,µ1,µ2Cµ,µ3,µ4 (F.76)

where

Jµ′,µ = 4π

∫
d3p

1

p2
eip·Rρtµ′(p)ρtµ(−p) (F.77)

and where

ρµ′(x) = Rn′,l′(2r)Yl′,m′(x̂)

ρµ(x) = Rn,l(2r)Yl,m(x̂) (F.78)

Then, making use of Fock’s relationship we have:

ρtµ′(p) = M̃(p)Yn′−1,l′,m′(ŵ) ≡ M̃(p)Yµ′(ŵ)

ρtµ(−p) = (−1)lM̃(p)Yn−1,l,m(ŵ) ≡ (−1)lM̃(p)Yµ(ŵ) (F.79)

where M̃(p) and ŵ are similar to M(p) and û, but with double the k value.

ŵ = (w1, w2, w3, w4) =

(
4kp1

4k2 + p2
,

4kp2

4k2 + p2
,

4kp3

4k2 + p2
,
4k2 − p2

4k2 + p2

)
(F.80)

and

M̃(p) ≡ 4(2k)5/2

(4k2 + p2)2
(F.81)
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Then

Jµ′,µ = 4π

∫
d3p

1

p2
eip·RM̃2(p)(−1)lYµ′(ŵ)Yµ(ŵ) (F.82)

Since we know how to represent the product (−1)lYµ′(ŵ)Yµ(ŵ) in terms of Yµ′′(ŵ), we can
express the matrix Jµ′,µ in terms of a single vector, Jµ′′ : Let

c̃µ′′;µ′,µ ≡ (−1)l
∫
dΩ4Y

∗
µ′′(ŵ)Yµ′(ŵ)Yµ(ŵ) (F.83)

Then

Jµ′,µ =
∑

µ′′

Jµ′′ c̃µ′′;µ′,µ (F.84)

where

Jµ ≡ 4π

∫
d3p

1

p2
eip·RM̃2(p)Yµ(ŵ) (F.85)

The coefficients c̃µ′′;µ′,µ differ slightly from the coefficients cµ′′;µ′,µ, but they too form a large
but very sparse matrix that can be pre-calculated and stored. We must now evaluate Jµ.
To do so, it is convenient to introduce the notation

ρtµ(p) = M̃(p)Yµ(ŵ) ≡ i−lRt
n,l(p)Yl,m(p̂) (F.86)

where

Rt
n,l(p) ≡

√
2

π

∫ ∞

0

dr r2jl(pr)Rn,l(2r) (F.87)

Then, expanding the plane wave in terms of spherical harmonics and spherical Bessel
functions and integrating over the solid angle in momentum space, we have:

Jµ = 4π

∫
d3p

1

p2
eip·RM̃2(p)Yµ(ŵ)

= (4π)2Yl,m(Ŝ)

∫ ∞

0

dp M̃(p)Rt
n,l(p)jl(pR) (F.88)

The radial p-integrals in equation (F.88) are simple enough to be evaluated exactly by
Mathematica, and they depend only on n and l. They can conveniently be stored as
interpolation functions. It is also convenient to initialize by performing the sum shown in
equation (F.84). This sum, and the sums required for the evaluation of Jµ1,µ2,µ3,µ4 from
Jµ′,µ can be performed very rapidly because of the sparseness of the coefficients.
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Figure F.7: The integrals
∫∞

0
dp M̃(p)Rt

n,l(p)jl(pR)/k of equation (F.88) are shown
here plotted as functions of S ≡ kR. There are 105 functions, corresponding
n = 1, 2, . . . , 14 and l = 0, 1, . . . , n− 1.
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Figure F.8: The integrals
∫∞

0
dp M̃(p)Rt

n,l(p)jl(pR)/k shown in more detail. For

small values of S the integrals are proportional to Sl, while for large values
they are proportional to 1/Sl+1.
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F.6 Many-center integrals treated by Gaussian ex-

pansions (Appendix E)

One also needs to calculate 3-center and 4-center integrals of the form

Jτ1,τ2,τ3τ4 =

∫
d3x

∫
d3x′ χ∗τ1(x)χτ2(x)

1

|x− x′|χ
∗
τ3

(x′)χτ4(x
′) (F.89)

where the centers Xa1 , . . . ,Xa4 may in general be 4 different points. Even in this difficult
case, molecular Sturmian basis functions have very marked advantages. One can show
(Appendix E) that Jτ1,τ2,τ3τ4/k is independent of k. They may therefore be calculated once
and for all and stored. One can also show (Appendix E) that the Coulomb Sturmian atomic
orbitals can be expressed in terms of Gaussian expansions, where the Gaussian exponents
αi are universals that need never be changed despite changes in scaling due changes in the
value of k. The coefficients γ0,i, γ1,i, . . . in the following expression

sje−s ≈
∑

i

γj,ie
−αis2 s ≡ kr (F.90)

are also universals, and they too need never be changed, despite changes in scaling. We
make the expansion

χτ (x) = χn,l,m(x−Xa) ≈ k3/2
∑

i

Γn,l,i e
−αi|kx−kXa|2Rml (kx− kXa)

(F.91)

where the coefficients Γn,l,i are defined by the relationship

√
2l + 1

4π
R̃n,l(s)s

−l ≈
∑

i

Γn,l,ie
−αis2 (F.92)

with R̃n,l(s) ≡ Rn,l(r)/k
3/2 and where Rml is a regular solid harmonic (Appendix E). Figure

5.9 shows the Gaussian expansion of e−s ≡ e−kr, while the table shows coefficients in the
expansion.
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Figure F.9: This figure shows the Gaussian expansion e−s ≈∑i γ0,ie
−αis2, using the 10 coef-

ficients and exponents shown in Table 5.5. The expansion is reasonably accurate throughout
most of the range, but it fails to produce the sharp cusp near s = 0.
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Figure F.10: Here we see the Gaussian expansion s2e−s ≈ ∑
i γ2,ie

−αis2. As in
Figure 5.9, the expansion is compared with the exact function.
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Table F.4: Universal coefficients for Gaussian expansions of Coulomb Sturmians: They are
used in the relationship sje−s =

∑
i γj,ie

−αis2 , where s ≡ kr. When k changes with scaling,
the Gaussian expansion changes scale automatically.

i αi γ0,i γ1,i γ2,i

1 5.12 0.474589 −0.456553 −0.011253

2 2.56 −0.409842 0.420846 −0.135640

3 1.28 0.522704 −0.461490 −0.030952

4 0.64 −0.028869 0.157189 −0.390496

5 0.32 0.237377 0.008340 −0.284720

6 0.16 0.074194 0.248277 0.001174

7 0.08 0.039810 0.147977 0.631545

8 0.04 −0.001091 0.025882 0.224411

9 0.02 0.000808 −0.001018 0.000462

10 0.01 −0.000129 0.000170 0.000468
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Figure F.11: Interelectron repulsion integrals Jτ1,τ2,τ3,τ4/k for diatomic molecules
for n = (2, 2, 2, 2) and l = (0, 0, 0, 0) as functions of S = kR. The lowest curve
shows a the results when (a1, a2, a3, a4) = (S.0, S, 0). The next higher curve
shows the case where (a1, a2, a3, a4) = (S.S, S, 0). The highest curve, which is
the (a1, a2, a3, a4) = (S.S, 0, 0) case, is compared with 1/S, which it approaches
asymptoticly as S becomes large.
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F.7 A pilot calculation

We have made a small pilot calculation on the dissociation of the hydrogen molecule, using
a very restricted basis set. In the calculation shown in Figure 5.12, the ground state wave
function changes character as a function of the internuclear separation, R. As R→ 0, the
wave function becomes more and more dominated by a configuration which is built from two
gerade molecular orbitals. But as the molecule dissociates, the wave function becomes the
linear combination of configurations representing two isolated neutral hydrogen atoms, each
with its own electron, and the total energy corresponds to that of two isolated hydrogen
atoms.



344 QUANTUM THEORY

2 4 6 8 10

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

Figure F.12: This figure shows the results of a preliminary calculation on the
dissociation of the hydrogen molecule using a very restricted basis set. Energies
are shown in Hartrees as functions of the internuclear separation, measured in
Bohrs. The lowest curve shows the ground-state electronic energy by itself,
without internuclear repulsion. The two upper curves show the ground state
and first excited singlet state electronic energies with nuclear repulsion added,
i.e. the total energies of the two states. The calculated equilibrium bond length
is 1.41 Bohrs, which can be compared with the experimental value, 1.40 Bohrs.
It can be seen from the figure that at a separation of 5 Bohrs or more, the
molecule is completely dissociated, and in fact the calculated wave function at
that internuclear separation corresponds to two neutral hydrogen atoms, each
with its own electron, while the total energy corresponds to that of two isolated
hydrogen atoms.
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Figure F.13: This figure shows ground-state energies divided by Z2 for the 2-
electron isoelectronic series for homonuclear diatomic molecules, Z being the
nuclear charges. The energies in Hartrees are shown as functions of the in-
teratomic distance R, measured in Bohrs. The dotted curves are electronic
energies alone, while the solid curves also include internuclear repulsion. For
both the solid and dotted curves the lowest curve corresponds to Z=1, the next
lowest to Z = 2, and so on. As in Figure 5.12, a very restricted basis set was
used for the calculation.
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F.8 Automatic generation of symmetry-adapted basis

functions

In Chapter 4, Section 4.2, we discussed a large-Z approximation that could be used when
the Generalized Sturmian method is applied to atoms. In the large-Z approximation,
the basis set used to treat a particular state is restricted to the set of configurations
that become degenerate if interelectron repulsion is completely neglected. We also saw in
Chapter 4 that such a set of states could be used as an invariant subset, and thus be used
to generate symmetry-adapted basis functions for more accurate calculations where the
large-Z approximation is abandoned.

If we compare equation (F.51) with equation (E.6) of Chapter 4, we can see that
the two equations are closely analogous. In each case, the configuration |Φν〉 satisfies
an approximate Schrödinger equation with a weighted potential V0, the weighting factors
being chosen in such a way as to make all of the configurations in the basis set isoenergetic.
Thus both the Goscinskian configurations of Chapter 4 and the isoenergetic configurations
of Chapter 5 are examples of generalized Sturmians, as discussed in Appendix B. Therefore
it is interesting to ask whether something analogous to the large-Z approximation exists
in the case of molecules. What happens if we decide to use as a basis only those molecular
configurations that become degenerate if we completely neglect interelectron repulsion?
Let us suppose that this degeneracy is not accidental, but is a due degeneracy. It then
follows that any set of configurations that become degenerate if interelectron repulsion is
completely neglected is closed under the operations of the symmetry group of the molecule,
and it can be used as an invariant subset for the automatic generation of symmetry-
adapted basis functions needed in a large and accurate calculation. The method can thus
be summarized as follows:

1. Construct the matrices T
(0,N)
ν′ν ≡ − 1

k
〈Φν′|V0(x)|Φν〉 and S

(N)
ν′ν , based on configurations

that are solutions to (F.51). These will already be diagonal, as was discussed above.

2. Search for configurations corresponding to the same value of T
(0,N)
ν,ν /S

(N)
ν,ν . Such a set

of degenerate configurations is an invariant subset provided that the search has been
sufficiently complete.

3. For each invariant subset, solve equation (F.60). The eigenfunctions will then be the
symmetry-adapted configurations needed for a larger and more accurate calculation.
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Use of the S-Matrix in the Relativistic Treatment 
of Resonance Energy Transfer 
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Copenhagen, Denmark 

Abstract 

The S-matrix formalism is used to treat the phenomenon of resonance energy transfer (sensitized 
fluorescence). It is shown that for dipole-allowed transitions and short sensitizer-acceptor separations, 
the relativistic treatment yields the same result as the nonrelativistic Perrin-Forster theory. For large 
sensitizer-acceptor separations, long-range coupling terms appear in the relativistic treatment. 
Resonance energy transfer through these long-range coupling terms is compared with spontaneous 
photon emission, and direct-interaction theories of electromagnetism are discussed. In the Appendix 
it is shown that the relativistic theory predicts resonance transfer of triplet excitation energy through 
the spin-spin coupling term in the Breit interaction. 

Experimental Discovery of Resonance Energy Transfer and Early Theories 

The phenomenon of resonance energy transfer was discovered experimentally 
in 1923 by Cario and Franck [l], who exposed a mixture of mercury and thallium 
vapors to a frequency of light which only the mercury could absorb. In  the 
emission spectrum they observed a frequency of light which only the thallium 
could emit, which demonstrated that energy had been transferred from one 
species to the other. 

A theory for the mechanism of energy transfer in the Cario-Franck experi- 
ment was first proposed by Perrin [2,3], and later improved by Perrin, Forster, 
and others [4-91. In the Perrin-Forster theory of resonance energy transfer, the 
system is divided into two subunits, and its initial state is represented by a wave 
function of the form: 

l*i)=l$c(1) $ g ( 2 ) ) ,  (1) 

where 4*(1) represents subunit 1 in the excited state 5, and $,(2) represents 
subunit 2 in the ground state. (For example, subunit 1 might be a mercury atom, 
while subunit 2 might represent a thallium atom.) 

The two subunits are assumed to be separated by a distance R which is large 
enough so that exchange can be neglected. In the final state of the total system, 
which is represented by a wave function of the form 

a transfer of excitation energy has taken place, so that subunit 1 is in its ground 
state g', while subunit 2 is in an excited state 5'. 

Q 1984 John Wiley and Sons, Inc. CCC 0020-7608/84/010079-18$04.O0 
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The Hamiltonian of the total system can be written in the form: 

H =Ho+H’, ( 3 )  

(4) 

where the unperturbed Hamiltonian 

Ho = HI + H* 

is the sum of the Hamiltonians of the isolated subunits 1 and 2, and where 

represents the Coulomb interaction between the charged particles i of subunit 
1 and the charged particles j of subunit 2, qi and qi being the respective charges. 

In the Perrin-Forster theory of resonance energy transfer, ITi) and /T i )  are 
eigenfunctions of Ho, and a transition between them is induced by H’. In order 
to calculate the probability per unit time of the transition i -f as a function of 
the separation R, one makes a bipolar expansion of l/lxi -xil around the center- 
of-mass positions R t  and Rz of the two subsystems: 

Because of the orthogonality relationships 

the matrix elements of the first three terms in Eq. (6) vanish, and the leading 
term in the matrix element for the transition is the dipole-diple term: 

If we let 
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and 

and if we note that 

where 

then Eqs. ( 5 )  and (9) yield: 

Since the matrix element for the transition falls off as l / R 3 ,  the transition 
probability per unit time falls off as 1/R6. Because of this, one sometimes 
expresses the Perrin-Forster rate constant for resonance energy transfer in the 
form: 

where T~ is the time needed for spontaneous emission of a photon, and Ro is 
the separation of 1 and 2 for resonance energy transfer which is equal to the 
probability for spontaneous photon emission. Typically, for dipole-allowed 
transitions, R o  is of the order of 50 A. The validity of the Perrin-Forster theory 
for dipole-allowed resonance energy transfer over distances of this order has 
been amply confirmed by experiments [ 11-14]. 

Relativistic Treatment of Resonance Energy Transfer 

Let us now try to improve the Perrin-Forster theory by taking relativistic 
effects into account [15, 161. To do this, we begin with the second-order 
electron-electron S-matrix [ 171: 

where 

d4xj = d3xj dtj, (18) 
and where G(1 ,2 )  is the Green’s function for the d’Alembertian operator: 

1 d4k e x p i k .  (x1-x2)-iw(fl-f2) 
G ( W = ~  J k . k - ( w / c ) ~  - is 
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Here e is a real, positive infinitesimal number which is allowed to go to zero 
after all the integrations have been performed, and d4k = d 3 k  d o .  In Eq. (16), 
b ; ,  b ; ,  bf, and 6 ,  are electron creation and annihilation operators obeying the 
anticommutation relations: 

b;b ,  i -bjb:  = 0, 

The electron creation and annihilation operators in Eq. (20) refer to spin orbitals 
which are eigenstates of the Dirac operator in a local potential (for example, 
the effective potential of an atom or molecule), and we are thus working in an 
independent particle approximation. In Eqs. (17) and (18) and throughout the 
remainder of this paper, a sum over p running from 1 to 4 is implied whenever 
the index p is repeated. The matrices y :  and y: are defined as in Ref. 18, with 
the superscripts indicating that they act, respectively, on the spin coordinates of 
electrons 1 and 2. We also use the definition &r = i@:y4 ,  where the dagger means 
“conjugate transpose,” and in general we shall follow the notation of Ref. 18. 

The matrix element in Eqs. (17) and (18) can be brought into another form 
by performing integrations over dt2,  d4k ,  and d t l :  If we assume that the orbitals 
@, and depend harmonically on time, then we can write: 

e&(2) r:at(2) = i Z ( x 2 )  exp ( i o S f t 2 ? ,  (21) 

where oSf = w, -or and 

i;(x2?=e&(x2) Y : w x ~ ) ,  (22) 

and similarly we can write: 

e c W 1 )  Y : Q , ~ ( ~ )  =i:”(x1)  exp (iorUt1), (23) 

where 

C ’ ( x l ) = e c G r ( x l )  r : ~ ~ ( x l ) .  

Then, integrating over dt2,  d4k ,  and d t l ,  we obtain [17]: 

where 

and where the transition currents i ; ( x l )  and j E ( x 2 )  are defined by Eqs. (22) and 
(24). The effective interaction energy matrix element U,s~t,  is similar to the 
matrix element of a Coulomb interaction, except that the transition densities 
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are replaced by a scalar product of transition four-currents, and the interaction 
contains a retardation factor, exp (ilustl r12/c) .  

In order to apply Eqs. (16)-(26) to the phenomenon of resonance energy 
transfer, let us represent the initial state of a system composed of two subunits 
by a wave function of the form: 

I%)= I$*(U &(2))=bmbflI$d(1) $g(2))=bmb"l%) (27) 

and let us represent the final state by the wave function 

I*f) = I$g ' ( l )  $*'(2)) = b:bkl$g'(l) $g(2)) = blbklq0).  (28) 

Equations (27) and (28) have the same meaning as Eqs. (1) and (2). In the initial 
state of the system, subunit 1 is in a singly excited state $,(1) which differs 
from the ground state by the excitation of an electron from the orbital n to the 
orbital rn, while subunit 2 is in its ground state $g(2). In the final state, the 
situation is reversed, and subunit 2 is excited while subunit 1 is in its ground 
state. The transition probability is proportional to l ( q i l S / 9 f ) l 2 .  Combining Eqs. 
(16), (27), and (28), and making use of the anticommutation relations (20), we 
obtain: 

(Vilslqf) = S m k l l n  - S m k l n l  = S m k l l n .  (29) 

In Eq. (29) we have used the fact that the two subunits are assumed to be 
separated by a distance R = IR1 - R21 which is large enough so that the exchange 
term can be neglected. 

Let us try to find the dependence of U m k l l n  on the separation R. We can 
make a bipolar expansion of (1/r12) exp ( i /wkl1r l2 /c )  about the points R1 and R2. 
If we let K = l W k l I / C ,  then the expansion analogous to Eq. (6) is 

In the nonrelativistic theory of resonance energy transfer, the first three terms 
in the bipolar expansion [Eq. (6)] vanish because of the orthonormality relations 
[Eqs. (7) and (8)]. By contrast, the first three terms in Eq. (30) all give rise to 
nonvanishing contributions to the matrix element Umklln. 

Substituting Eq. (30) into Eq. (26) we obtain: 

a a + d3x1(x1 -R1).-j,"" (x,) d 3 x 2 ( x 2 - R 2 ) . - j ~ ( x ~ )  J aRi aR2 
i K R  

+. . .)L 
R '  
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To see that the first term in Eq. ( 3 1 )  does not vanish, we note that 

The fourth component vanishes, since y i y i  = 1 and, if m # n, 

However, the space part of the four-vector d'xl jF"(xl) does not vanish, since 

Thus we find that in the relativistic theory of resonance energy transfer, there 
is a nonzero term of the form: 

This term represents magnetic coupling between the two subsystems, and it is 
remarkable because it falls off only as 1 /R .  

Other terms proportional to 1 / R  arise when the differential operators a/aR, 
and d/dR2 act exclusively on the retardation factor e i K R  rather than on the 
denominator of e iKR/R.  Thus, for example, 

) .  (36) 
R,R,(3 -it& - K 2R2)  

R 2  
&,,( 1 - ~ K R )  - 

a2 e i K R  -=-( e i K R  
aR1,aR2, R R 

The term proportional to K~ in Eq. (41) falls off only as 1/R.  If we substitute 
Eq. (36) into the fourth term of Eq. ( 3 1 ) ,  we obtain: 
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If the transitions m +rz and k + I  are dipole allowed, then the I*. = 4  term 
predominates over the I*. = 1, 2, and 3 terms, and Eq. (37) becomes: 

J 

where D1 and 

C'K' (D~  . R ) ( D ~ .  R) e i K R  -+. . . 
R 2  R 

w- 

D2 are the transition dipole moments: 

KR , > I  

D l = e  I d3x1 @ h d x l - R l ) @ f l ( x l ) ,  

D2 = e d3x2 @;(x2)(x2- R2)@,(xZ). I 
With the help of the commutation relation: 

(38) 

(39) 

we can express Eq. (35) in the form: 

= C ~ K ' ( D ~  . D ~ ) ,  (41) 
with D, and D2 defined by Eq. (39). Thus when R is large compared with 
1 / ~  =h/2.rr = c/lwmn1, then the leading term in the multipole expansion is 

In the opposite case, when R is small compared with 1 / ~ ,  substitution of Eq. 
(36) into Eq. (31) yields: 

(43) 
(Di * Dz) - 3 ( D i .  R)(Dz * R) 

U m k l l n  R 3  R 5  

Comparing this with Eq. (14), we can see that the relativistic treatment of 
resonance energy transfer gives the same result as the Perrin-Forster theory for 
dipole-allowed transitions and small values of R. For large values of R, the 
relativistic treatment of the dipole-allowed case yields a coupling term [Eq. (42)] 
that falls off as 1/R. 

Probability Per Unit Time for Resonance Energy Transfer 

Let us now turn to the problem of calculating the probability per unit time 
for resonance energy transfer. In the nonrelativistic case, the matrix element of 



86 A V E R Y  

the perturbation inducing the transition lUi) + lUf) has a leading term given by 
Eq. (14). In first-order time-dependent perturbation theory, the probability per 
unit time that the transition will take place is given by laf12/t where 

so that 

(45) 
[exp (iwift)  - ~][exp (-iwift) - 11 I d  = 7 2 

0 i f  

We must now remember that the system is not completely isolated, but is 
coupled with its surroundings. This coupling can be taken into account by saying 
that the states \qi) and lqf) are not exactly stationary, but that there are certain 
unspecified interactions with the environment other than H' .  These interactions 
collectively produce, on the average, r transitions per unit time which will take 
the system out of the state lqi) or the state lPf) and into some other state. This 
coupling of the system with its environment can be taken into account in our 
simplified perturbation model by saying that the states 1qi) and are split by 
the interaction into a group of states. The density of these states (i.e., the number 
of states per energy interval) is given by a Lorentzian distribution: 

This type of distribution corresponds, for example, to the measured line shape 
for atomic spectra. r is the radiation half-life for spectra of isolated atoms in a 
rarified gas. In a gas at atmospheric pressure, where collision broadening pre- 
dominates, l/r corresponds to the average time between collisions. The factor 
r/.rr in the numerator in Eq. (45) normalizes the distribution in such a way that 

m 

d w p ( w ) =  1 .  I-, (47) 

We must now calculate the probability of transition from one of the group 
of states into which \Ti) is split by the interaction with its environment to one 
of the group of states into which ITf) is split. Then we must sum these probabilities 
over the whole set of final states, and finally we must sum over the whole set 
of initial states. In other words, we must evaluate: 

(48) 
{exp[i(w -w')t]-l}{exp [ - i (w -w')t]-l} 

(w - w y  
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Evaluating the double integral in Eq. (48) by means of contour integration, we 
obtain: 

This represents the probability that after an interval t the system will have 
undergone a transition from the initial state \qi) to the final state Thus, in 
the special case where wi = wf,  the rate at which the transition takes place 
becomes: 

Using Eq. (14) and taking the z axis in the direction of R, we can write for the 
nonrelativistic case: 

1 
= - (D:,D ;. + D :,D ;y + 4D7,D ;z - 201.0 lzD2xD2z 

R6 

- 2 0  1 yD 1 D z  yDzz + D 1 ,D I yD2xDz ). (51) 
If our manifold of final states includes states which represent resonance energy 
transfer to various randomly oriented absorber molecules, we must average over 
the orientations of D2 with respect to R. Doing this, and averaging also over 
the orientations of D 1  with respect to R, we obtain: 

For dipole-allowed transitions in organic dyes, such as acriflavine and rhodamine 
B (two dyes commonly used in studying resonance energy transfer), if the 
transition dipole moment is expressed in the form D = eL, where e is the charge 
of an electron, then L is a length whose order of magnitude is a few Angstroms. 
If we let r = 1013 - /s and T~ = lo-' s and if we rewrite Eq. (52 )  in the form: 

then 

Now let us consider what effect the relativistic corrections have on the rate 
of resonance energy transfer for dipole-allowed transitions. If we replace H ;  
by the matrix element of the effective interaction energy, Umklln [Eqs. (31), 
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(42), and (43)], then we find that for KR << 1 the rate of resonance energy transfer 
is given by Eqs. (53) and (54), in agreement with the Perrin-Forster theory. 
However, when KR -- 1, the relativistic effects begin to become important, and 
when KR >> 1, they predominate. Combining Eqs. (42) and (50) and averaging 
over orientations of the dipole moments, we obtain an average transition rate 
for the region where KR >> 1: 

The R dependence of the average rate of resonance energy transfer for dipole- 
allowed transitions is illustrated in Figure 1. 

Long-Range Resonance Energy Transfer 

From Eq. (55)  we can see that when KR >> 1, the probability for resonance 
transfer of excitation energy from an excited atom or molecule to an absorber 

\ 

-12 I I \r I 

- 2  -1 0 1 2 
l o g  ( x R )  - 

Figure 1. Dependence of the averaged rate of resonance energy transfer on the 
sensitizer-acceptor separation R for dipole-allowed transitions. For small separ- 
ations, relativistic corrections to the Perrin-Forster theory are unimportant, and 
the transition rate falls off as l / R h .  When R = 1 / ~  =A/2.rr, relativistic corrections 
become important, and for larger separations, they predominate. When KR >> 1, 
the averaged transition rate falls off as 1/R2. (-) Relativistic transfer rate; (---) 

transfer rate in the nonrelativistic Perrin-Farster theory. 
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is proportional to SIR2. Let us now imagine an excited atom placed at the center 
of a sphere of radius R,  where R > S / K .  Let us also imagine that on the surface 
of the sphere there are a number of similar atoms in their ground states. According 
to the argument outlined above, the probability for resonance energy transfer 
to one or another of the atoms on the sphere will fall off as SIR2. On the other 
hand, the number of absorber atoms which we can place on the sphere without 
changing the number per unit area will increase as R2.  Thus, if we keep the 
number per unit area constant, the probability of resonance energy transfer to 
one or another of the absorbers will be independent of R. For example, suppose 
that the transition dipole moment of the atoms which we are considering is given 
by D = eL, and suppose that the number of absorber atoms per unit area on the 
surface of the sphere is 1/4?rL2. Then the total number on the surface of the 
sphere will be N =4?rR2/4?rL2=R2/L2. The ratio of the rate of resonance 
energy transfer to one or another of the absorbers to the rate of spontaneous 
photon emission will have the order of magnitude [from Eq. ( S S ) ] :  

where X = 1 / K .  If we let T~ = lO-’s, r- l0l3 - /s, and A - 1000 A, Eq. (56 )  gives 
the order of magnitude of the ratio as approximately unity. We can see from 
this argument that a theory of resonance energy transfer which takes relativistic 
effects into account leads to the surprising prediction that resonance energy 
transfer can take place over macroscopic distances! (It should be remembered, 
however, that the simple first-order perturbation theory which we have used 
here is inadequate in an important respect since it is unable to take into account 
the screening of one absorber by another. In order to describe this screening, 
it would be necessary to treat resonance energy transfer in a manner analogous 
to the treatment of delocalization of an initially localized Frenkel exciton state 
[19-2 11.) 

Possible Experiments to Observe Long-Range Energy Transfer 

The Perrin-Forster-type of resonance energy transfer (sometimes called 
“sensitized fluorescence”) is usually studied in aqueous solutions of organic dyes, 
such as acridine orange, acriflavine, rhodamine B, etc. These dyes have the 
advantage of large transition dipole moments. They also have a high fluorescence 
efficiency, i.e., it seldom happens that an excited dye molecule loses all of its 
energy to vibrational modes. A little energy is always lost 1221, and therefore 
the absorption maximum does not coincide with the fluorescence maximum. 
Resonance energy transfer is most likely when the fluorescence maximum of 
the excited molecule corresponds to the absorption maximum of the absorbers. 
In the usual experiments, two dyes, a “sensitizer” S and an “acceptor” A are 
chosen such that this resonance condition is fulfilled, and they are mixed together 
in solution. The solution is irradiated with light whose frequency corresponds 
to the absorption maximum of S, and the fluorescence spectrum is observed. 



90 AVERY 

It is found that the quantum efficiency of the fluorescence of S is increased by 
the presence of A, and that the fluorescence efficiency of A is increased (“sensit- 
ized”) by the presence of S. In moderately concentrated solutions, where the 
average S-A distance is of the order of 50 A, the deduced rate of energy transfer 
is far too great to be explained by emission and reabsorption of photons. 

The difficulty with this type of experiment as a means of detecting long-range 
resonance energy transfer is that the total observed fluorescence is due to the 
combined effect of a great many S and A molecules. These molecules are 
randomly distributed throughout the solution. The environment of some 
sensitizer molecules includes an acceptor at very close range, whereas other 
sensitizers have no acceptor nearby. One of Forster’s important achievements 
is the deduction of a l / R 6  dependence for the transfer rate from a statistical 
analysis [23] of the concentration dependence of sensitized fluorescence in dye 
solutions. However, the indirectness and difficulty of such an analysis have led 
other authors to hope that experiments could be performed in which the S-A 
would be constant and measurable. Zwick and Kuhn [24] achieved such an 
experiment by absorbing the S and A molecules on opposite sides of thin layers 
of barium stearate, using a technique developed by Langmuir and Schaefer [25]. 
The dyes used by Zwick and Kuhn were acriflavine and rhodamine B. The 
absorption and fluorescence maxima of both these dyes are in the visible range, 
whereas barium stearate is transparent in the visible, having its absorption 
maximum in the ultraviolet. The layer of stearate was therefore optically inert 
and served only to separate the S monolayer from the A monolayer. Zwick and 
Kuhn measured the quantum fluorescence efficiency of the acceptor as a function 
of film thickness, and they found a deduced transfer rate in agreement with a 
1/R6 dependence up to a film thickness of 100 A. 

The Zwick-Kuhn technique seems better suited to an attempt to measure 
long-range resonance energy transfer than an experiment carried out in solution. 
In a solution, the extremely strong short-range transfer between molecules which 
are accidentally close together forms a background which would mask the weaker 
long-range effects. On the other hand, for two layers separated by an inert film, 
the S-A distance is always greater than the thickness of the film. Therefore one 
might attempt an experiment of the following kind: Consider a sandwich-like 
arrangement with monolayers of S and A separated by a layer of a transparent 
medium as shown in Figure 2. The whole transparent film is covered on one 
side with the sensitizer dye. On the other side of the film, only half the area is 
covered with the acceptor. The film is illuminated from the S side with monochro- 
matic light at the absorption peak of S, and the fluorescence efficiency of S is 
observed from the S side as a function of film thickness. If resonance energy 
transfer from S to A is competing with emission of a photon by S, then the 
fluorescence of S, observed from the S side, will be quenched in the region of 
the film where A is present on the opposite side. If this quenching is observed, 
then resonance energy transfer can be inferred, since the presence of A on the 
opposite side could not decrease the fluorescence of S by any other mechanism. 
Such an experiment has not yet been performed (see Figs. 2 and 3). 
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S 

A 

Figure 2. Arrangement of sensitizer and acceptor layers on opposite sides of a thin 
film of barium stearate in the experiments performed by Zwick and Kuhn [24]. 
These authors measured the rate of energy transfer from S to A up to film thicknesses 

of 100 A. Experiments at larger film thicknesses have not yet been performed. 

Direct-Interaction Theories of Electrodynamics 

We saw above that a theory of resonance energy transfer which includes 
relativistic effects leads to the very surprising prediction that the rate of resonance 
energy transfer over macroscopic distances can be comparable to the rate of 
spontaneous photon emission. We must now ask whether this predicted long- 
range resonance energy transfer is a phenomenon which competes with spon- 
taneous photon emission, or whether it is just another way of describing the 
spontaneous emission of a photon and its subsequent absorption by the acceptor. 

Suppose that we choose the second answer and maintain that long-range 
resonance energy transfer is just another way of describing spontaneous photon 

t w 

Figure 3. Absorption maxima ( w ,  and w 3 )  and fluorescence maxima (w2 and u d )  
for experiments on resonance energy transfer performed with organic dye 
molecules. Because of the loss of energy to vibrational modes, the fluorescence 
maxima of both the sensitizer and acceptor are shifted to the red with respect to 
the absorption maxima. The rate of transfer is greatest when the fluorescence 
maximum of the sensitizers coincides with the absorption maximum of the acceptors, 
i.e., when w 2  = w3. In our simplified theory, r represents the halfwidth of the bands. 
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emission. Then we should note an important difference between the resonance 
transfer description and the conventional one. In the conventional description, 
no absorber need be present in order for the photon to be emitted. For example, 
in the standard cosmological description of the early stages of the universe [26], 
all the matter is imagined to have been initially concentrated in a small region 
of space. Subsequently, the matter exploded out from this position, but with a 
velocity less than the velocity of light. Thus, unless space is closed, it is divided 
into two regions-a central region containing matter and an outer region which 
is entirely empty. According to the conventional description of spontaneous 
photon emission, photons must be streaming out from the central region into 
the totally empty space beyond. On the other hand, if absorbers are necessary 
for emission of radiation, then at all times during the evolution of the universe 
the radiation energy would be retained within the region occupied by the matter. 
Thus the two pictures lead to very different cosmological models, which could, 
in principle, be distinguished experimentally. 

We should also note another difference between the resonance energy transfer 
description of radiation and the conventional one. In the conventional descrip- 
tion, the radiation field has an infinite number of degrees of freedom, while in 
the direct-interaction picture, the field has no more degrees of freedom than 
the particles which generate it. The infinite number of degrees of freedom which 
the electromagnetic field has in the conventional picture lead to an embarrassing 
infinity in the zero-point energy of the field, and this infinity is avoided in the 
direct-interaction picture. For this reason, a number of authors have explored 
the possibility of formulating quantum electrodynamics in terms of a direct 
interaction [27-32, 35-42]. Interest in direct-interaction formulations of elec- 
trodynamics has also been motivated by the desire of quantum physicists and 
chemists to have a fully relativistic method for calculating the bound states of 
atoms and molecules. For example, Roothaan has recently approached the 
problem from this direction [34]. 

I hope that the present paper will contribute to the current interest in 
direct-interaction theories of quantum electrodynamics. 

Appendix: Resonance Transfer of Triplet Excitation Energy through 
Spin-Spin Coupling Terms in the Breit Interaction 

In the main part of this paper, we have discussed resonance energy transfer 
for cases where both the sensitizer and acceptor undergo dipole-allowed transi- 
tions. In this appendix, we shall treat triplet energy transfer. This is a case in 
which the sensitizer and acceptor undergo dipole-forbidden transitions involving 
a spin flip. 

A theory of triplet energy transfer has been developed by Dexter for cases 
where the sensitizer and acceptor are close enough to each other so that there 
is some overlap of the wave functions [9]. However, in this appendix we shall 
confine our attention to cases where the sensitizer-acceptor separation R is large 
enough so that overlap between the wave functions can be neglected. We shall 
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see that in this case, the spin-spin coupling terms in the Breit interaction produce 
a small probability for triplet energy transfer. Although the rate of triplet energy 
transfer induced by this coupling is small, we shall see that it is large enough to 
be observed during the very long lifetimes which the triplet states of aromatic 
hydrocarbons exhibit when the molecules are frozen in rigid matrices. 

In order to discuss the spin-spin coupling, it is convenient to expand the 
matrix element of the effective interaction energy U,I,, [Eq. (26)] in powers of 
l / c ,  retaining terms up to 1/c2, and solving for the small components of the 
four-component Dirac spinors in terms of the large components. If we do this, 
we obtain [17] 

where U(e’ is the Breit interaction operator in the Pauli approximation: 

In Eq. (A2), r=xl -xz ,  while u1 and u2 are three vectors whose components 
are the Pauli spin matrices ux, cry, and uz. In Eq. (Al) ,  4r, &, 4,, and 4, are 
two-component electron spin orbitals. The term 

>. ul uz 3(ul * r)(u2 r) 
H” = ( &)2 (7- r 5  

in Eq. (A2) is responsible for the mechanism of triplet resonance energy transfer 
which will be discussed in this appendix. 

Let us introduce a notation where It, 1) denotes a spin state where electron 
1 has its spin pointing parallel to the z axis, while the spin of electron 2 is 
antiparallel. If I J ,  T) represents the opposite situation, while (1, denotes the 
adjoint of IL, t), then 
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The matrix element responsible for resonance transfer of triplet excitation energy 
then becomes: 

[ d3x1 [ d3x2 ~ T ( x I ) ~ T ( ~ ~ ) H " ~ ~ ( x z ) ~ ~ ( x ~ )  

where we have made a bipolar expansion of H"(r)  around the sensitizer and 
acceptor centers as in Eq. (6). For triplet-singlet transitions, the integrals involv- 
ing the space parts of the electron orbitals are not equal to zero because the 
triplet and singlet orbitals are eigenfunctions of different Fock operators, and 
hence not orthogonal. 

Letting R = (X, Y, Z) we have 

and similarly, 

while 

so that 

and 

(A101 

Averaging over orientations and setting 

we obtain the order of magnitude for the transition rate [Eq. (49)] as 

1 9 e h  - - _ -  - ( ~ ~ - . f )  - 5 ( 2mc )2hf;;". 
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Equation (A12) can be rewritten in the form: 

where, with T= 1OZ3-/s and ro= 10 s, 

Rl=lOA. 1414) 

Resonance transfer of triplet excitation energy over distances of this magnitude 
has been observed experimentally by Gay [33]. 

Acknowledgments 

The author is extremely grateful to Lektor Lars Erik Lundberg and Professor 
Jens Peder Dahl for stimulating discussions. He is also very grateful to Professors 
D. P. Craig, E. A. Power, P. 0. Lowdin, 0. Goscinski, and J. Jortner for their 
advice and encouragement. 

Bibliography 

[l] G. Cario and J. Franck, Z. Phys. 17,202 (1923). 
[2] J. Perrin, Proces de la Conseil de Chimie Solvay (Gauthier and Villar, Paris, 1925), p. 322. 
[3] J. Perrin, C.R. Acad. Sci. 184, 1097 (1927). 
[4] H. Kallmann and F. London, Z. Phys. Chem. B2,207 (1928). 
[5] F. Perrin, Ann. Phys. 17,283 (1932). 
[6] Th. Forster, Naturwissenschaften 33, 166 (1946). 
[7] Th. Forster, Z. Naturwiss. A 4, 321 (1949). 
[8] S. I. Vavilov, J. Phys. (USSR) 7, 141 (1943). 
[9] D. L. Dexter, J. Chem. Phys. 21, 836 (1953). 

[lo] J. Franck and R. Livingston, Rev. Mod. Phys. 21, 505 (1949). 
[ l l ]  S. I. Vavilov, Microstructure of Light (Verlag, Berlin, 1954). 
[12] E. J. Bowen and B. Brocklehurst, Trans. Faraday SOC. 49, 1131 (1953). 
[13] A. N. Terenin and V. L. Ermolaev, Usp. Fiz. Nauk. 58, 37 (1953). 
[ 141 Th. Forster, Fluoreszinz Organischer Verbindungen (Vandenhoeck and Ruprecht, Gottingen, 

[15] J. Avery, Proc. Phys. SOC. (London) 88, 1 (1966). 
[16] R. R. McLone and E. A. Power, Mathematica 11, 91 (1964). 
[17] A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Interscience, New York, 

[ 181 J. Avery, Creation and Annihilation Operators (McGraw-Hill, New York, 1976). 
[19] J. Avery, R. Mason, and L. G. Augenstein, Biopolym. Symp. 1, 259 (1964). 
[20] J. Avery and R. Mason, J. Phys. Chem. 69, 784 (1965). 
[21] J. Avery, in Electronic Aspects ofBiochernistry, B. Pullman, Ed. (Academic, New York, 1964). 
[22] J. Avery, The Quantum Theory of Atoms, Molecules and Photons (McGraw-Hill, New York, 

[23] J. Avery and J. C. Packer, in The Triplet State, A. B. Zahlan, Ed. (Cambridge U.P., Cambridge, 

[24] M. M. Zwick and H. Kuhn, Z. Naturforsch. A 17,411 (1962). 
[25] I. Langmuir and V. J. Schaefer, J. Am. Chem. SOC. 59, 1406 (1937). 
[26] S. Weinberg, The First Three Minutes (Bantam, New York, 1979). 
[27] J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157 (1945). 
[28] J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21, 425 (1949). 

195 1). 

1965). 

1972), pp. 251-253. 

1967). 



96 AVERY 

[29] G. Ludwig, Z. Naturforsch. A 5, 637 (1950). 
[30] G. Siissmann, Z. Phys. 131,629 (1952). 
[31] G. N. Lewis, Proc. Natl. Acad. Sci. USA 12, 22 (1926). 
[32] L. E. Lundberg, Commun. Math. Phys. 50, 103 (1976). 
[33] H. Gay, “Studies of phosphorescence and energy transfer between triplet states in aromatic 

hydrocarbons, Ph.D. Thesis, Imperial College of Science and Technology, London, 1964. 
[34] C. C. J. Roothaan, in The Uncertainty Principle and Foundations of Quantum Mechanics, A 

Fifty Year Survey-A Tribute to Werner Heisenberg, W. C. Price and S. S. Chissick, Eds. (Wiley, 
London, 1977). 

[3S] F. Hoyle and J. V. Narlikar, Ann. Phys. 54, 207 (1969); 62, 44 (1971). 
[36] P. C. W. Davies, Proc. Cambr. Philos. SOC. 68, 751 (1970). 
[37] P. C. W. Davies, J. Phys. A 4, 836 (1971); 5, 1025 (1972). 
[38] H. J. Groenwold, K. Ned. Akad. Wet. Versl. Gewone Vergad. Afd. Natuur. Kd. 52, 226 

[39] J. A. Wheeler, “Pregeometry: Motivations and prospects,” in Quantum Theory and Gravitation, 

[40] S .  Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of 

[41] L.-E. Lundberg, Commun. Math. Phys. 50, 103 (1976). 
[42] L.-E. Lundberg, preprint (1982). 
[43] E. A. Power, Phys. Rev. A 10, 756 (1974). 
[44] E. A. Power, J. Chem. Phys. 46,4297 (1967). 
[4S] E. A. Power, W. J. Meath, and J. 0. Hirshfelder, Phys. Rev. Lett. 17, 799 (1966). 
[46] L. Gomberoff and E. A. Power, Proc Phys. SOC. 88, 281 (1966). 
[47] L. Gomberoff, Proc. R. SOC. London Ser. A 295,476 (1966). 
[48] R. R. Mclone and E. A. Power, Proc. R. SOC. London Ser. A 286,573 (1965). 

(1949); 53,414, 610 (1950). 

A. R. Marlow, Ed. (Academic, New York, 1980). 

Relativity (Wiley, New York, 1972), p. 619. 



Einstein A-coefficients for acridine orange in
various solvents

March 3, 2019

Definition of the Einstein A-coefficients
The Wikipedia article on the Einstein A and B coefficients defines the A coefficients as
follows: “Spontaneous emission is the process by which an electron ‘spontaneously’
(i.e. without any outside influence) decays from a higher energy level to a lower one.
The process is described by the Einstein coefficient A21 sec−1, which gives the proba-
bility per unit time that an electron in state 2 with energy E2 will decay spontaneously
to state 1 with energy E1, emitting a photon with an energy E2 − E1 = hν. Due to
the energy-time uncertainty principle, the transition actually produces photons within
a narrow range of frequencies called the spectral linewidth. If ni is the number density
of atoms in state i , then the change in the number density of atoms in state 2 per unit
time due to spontaneous emission will be

(
dn2
dt

)

spontaneous

= −A21n2 (1)

The same process results in increasing of the population of the state 1:
(
dn1
dt

)

spontaneous

= A21n2 (2)

Tables of Einstein A-coefficients
An article by P.M. Meti et. al. gives the following values for the Einstein A-coefficients
of acridine orange hemi zinc salt in various solvents as functions of concentration.
These tables refer to the transition from the first electronically excited state of acridine
orange to the ground state.

1



Table 1: Acridine orange in ethanol solvent

concentration (M) A-coefficient, sec−1

1×10−5 2.5× 106

2×10−6 6.9× 106

3×10−6 4.6× 106

4×10−6 4.14× 106

Table 2: Acridine orange in propanol solvent

concentration (M) A-coefficient, sec−1

1×10−5 6.9× 106

2×10−6 1.61× 106

3×10−6 1.65× 106

4×10−6 8.6× 106

2



Table 3: Acridine orange in butanol solvent

concentration (M) A-coefficient, sec−1

1×10−5 4.6× 105

2×10−6 1.15× 105

3×10−6 1.03× 105

4×10−6 7.47× 105

Table 4: Acridine orange in decanol solvent

concentration (M) A-coefficient, sec−1

1×10−5 4.6× 105

2×10−6 3.2× 106

3×10−6 2.07× 106

4×10−6 9.6× 105

3



Derivation of the transition dipole moment from the Einstein A-
coefficient
Here is an excerpt from Notes.pdf:

In the dipole approximation, the average rate of spontaneous photon emmission is
given by

1

τ0
=

1

3

(
e2

~c

)
k3D2c =

1

3

(
e2

~c

)
(kD)2kc (3)

where

k =
2π

λ
=
Ei

~c
(4)

is the wave number of the emitted light, λ being the wavelength and Ei the energy
difference between the Stokes-shifted initial excited state and the ground state. For
acridine orange, the maximum emission takes place at a wavelength of

λ ≈ 550 nanometers = 5500 Angstroms (5)

Then

ω1 = kc ≈
(

2π

5.5× 10−7m

)
3× 108m/sec

= 3.43× 1015 sec−1 (6)

For an organic molecule such as acridine orange, the transition dipole moment, D, can
be approximated by the size of the molecule, let us say 1 nanometer. With this very
rough estimate, we can write

k2D2 ≡
(
2πD

λ

)2

≈
(

2π

550

)2

≈ 1.3× 10−4 (7)

a pure number. The fine structure constant is also a pure number. Putting all these
elements together, we obtain a very rough estimate for the rate of spontaneous emission
of an organic dye molecule such as acridine orange:

1

τ0
=

1

3

(
e2

~c

)
k3D2c

≈ 1

3

(
1

137

)(
1.3× 10−4

)
3.43× 1015 sec−1

≈ 109 sec−1 (8)

For 2 molar acridine orange in ethanol, the rate of spontaneous photon emission de-
rived from the Einstein A-cofficient is 6.9 × 106 sec−1. Thus with this solvent and
concentration, equation (1) becomes

(
dn2
dt

)

spontaneous

= −6.9× 106 n2 sec
−1 (9)
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Figure 1: Acridine orange hemi zinc salt.

where n2 is the number of acridine orange molecules per unit volume. In the special
case where there is only one molecule present, equations (8) and (9) can be compared.
We find from the ratio that

(kD)2 =

(
6.9× 106

109

)
×
(
1.3× 10−4

)
≈ 10−6 (10)
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to the Memory of P.O. Löwdin, I, Brändas, E.J. and Kryachko, E.S., Eds.,
Kluwer, Dordrecht, 297, 2003.



BIBLIOGRAPHY 373

[21] Aquilanti, V. and Avery, J., Sturmian expansions for quantum mechanical many-
body problems and hyperspherical harmonics, Adv. Quant. Chem., 39 72-101, 2001.

[22] Atkins, P.W., Child, M.S. and Phillips, C.S.G., Tables for Group Theory, Ox-
ford, 1970.

[Avery, 1976] Avery, J., Creation and Annihilation Operators, McGraw-Hill, 1976.

[Avery and Ørmen, 1980] Avery, J. and Ørmen, P.J., Transferable integrals in a deforma-
tion density approach to molecular orbital calculations; IV. Evaluation of angular
integrals by a vector-pairing method, Int. J. Quantum Chem., 18 953-971, 1980.

[Avery, 1989] Avery, J., Hyperspherical Harmonics; Applications in Quantum
Theory, Kluwer Academic Publishers, Dordrecht, 1989.

[23] Avery, J., Hyperspherical Sturmian basis functions in reciprocal space, in New
Methods in Quantum Theory, Tsipis, C.A., Popov, V.S., Herschbach, D.R.,
and Avery, J.S., Eds., Kluwer, Dordrecht, 1996.

[24] Avery, J. and Antonsen, F., A new approach to the quantum mechanics of atoms
and small molecules, Int. J. Quantum Chem., Symp., 23 159, 1989.

[25] Avery, J. and Antonsen, F., Iteration of the Schrödinger equation, starting with
Hartree-Fock wave functions, Int. J. Quantum Chem., 42 87, 1992.

[26] Avery, J. and Antonsen, F., Theor. Chim. Acta, 85 33, 1993.

[27] Avery, J. and Herschbach, D. R., Hyperspherical Sturmian basis functions, Int. J.
Quantum Chem., 41 673, 1992.

[28] Avery, J. and Wen, Z.-Y., A Formulation of the quantum mechanical many-body in
terms of hyperspherical coordinates, Int. J. Quantum Chem., 25 1069, 1984.

[29] Avery, J., Correlation in iterated solutions of the momentum-space Schrödinger
equation, Chem. Phys. Lett., 138 (6) 520-4, 1987.

[30] Avery, J., Hyperspherical harmonics; Some properties and applications, in Con-
ceptual Trends in Quantum Chemistry, Kryachko, E.S., and Calais, J.L.,
Eds, Kluwer, Dordrecht, 1994.

[31] Avery, J., Hansen, T.B., Wang, M. and Antonsen, F., Sturmian basis sets in mo-
mentum space, Int. J. Quantum Chem., 57 401, 1996.

[32] Avery, J., and Hansen, T.B., A momentum-space picture of the chemical bond Int.
J. Quantum Chem., 60 201, 1996.

[33] Avery, J., Many-particle Sturmians, J. Math. Chem., 21 285, 1997.



374 BIBLIOGRAPHY

[34] Avery, J. and Antonsen, F., Relativistic sturmian basis functions, J. Math. Chem.,
24 175, 1998.

[35] Avery, J., A formula for angular and hyperangular integration, J. Math. Chem., 24
169, 1998.

[Avery, 1999] Avery, J., Many-electron Sturmians applied to atoms and ions, J. Mol.
Struct., 458 1, 1999.

[Avery, 1999a] Avery, J., Many-electron Sturmians as an alternative to the SCF-CI
Method, Adv. Quantum Chem., 31 201, 1999.

[Avery, 2000] Avery, J., Hyperspherical Harmonics and Generalized Sturmians,
Kluwer Academic Publishers, Dordrecht, Netherlandsf, 2000.

[36] Avery, J. Selected applications of hyperspherical harmonics in quantum theory, J.
Phys. Chem.. 97 2406, 1993.

[37] Avery, J. and Antonsen, F., Evaluation of angular integrals by harmonic projection,
Theor. Chim. Acta., 85 33, 1993.

[38] Avery, J., Fock transforms in reciprocal-space quantum theory, J. Math. Chem., 15
233, 1994.

[39] Aquilanti V. and Avery, J., Generalized potential harmonics and contracted Stur-
mians, Chem. Phys. Letters, 267 1-8, 1997.

[40] Avery, J., Many-electron Sturmians applied to atoms and ions, J. Mol. Struct.
(Theochem), 458 1-9, 1999.

[41] Avery, J., A formula for angular and hyperangular integration, J. Math. Chem., 24
169-174, 1998.

[42] Avery, J. and Sauer, S., Many-electron Sturmians applied to molecules, in Quan-
tum Systems in Chemistry and Physics, Volume 1, Hernández-Laguna, A.,
Maruani, J., McWeeney, R. and Wilson, S, Eds., Kluwer Academic Publishers, 2000.

[43] Avery, J. and Coletti, C., Generalized Sturmians applied to atoms in strong external
fields, J. Math. Chem., 27 43-51 2000.

[44] Avery, J. and Coletti, C., Many-electron Sturmians applied to atoms and ions in
strong external fields, in New Trends in Quantum Systems in Chemistry and
Physics, Marauani, J. et al., Eds., 77-93, Kluwer Academic Publishers, 2001.

[45] Avery, J. and Shim, R., Core ionization energies of atoms and molecules calculated
using the Generalized Sturmian Method, Int. J. Quantum Chem., 79 1-7, 2000.



BIBLIOGRAPHY 375

[46] Avery, J., The Generalized Sturmian Method and inelastic scattering of fast elec-
trons, J. Math. Chem., 27, 279-292, 2000.

[47] Avery, J., Sturmian methods in quantum theory, in Proc. Workshop on Concepts
in Chemical Physics, Billing, G.D. and Henriksen, N., Eds., Danish Technical
University, 2001.

[Avery, 2003] Avery, J., Sturmians, in Handbook of Molecular Physics and Quan-
tum Chemistry, Wilson, S., Ed., Wiley, Chichester, 2003.

[48] Avery, J., Harmonic polynomials, hyperspherical harmonics, and Sturmians, in
Fundemental World of Quantum Chemistry, A Tribute Volume to the
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